This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A199061 #8 Feb 07 2025 16:44:05 %S A199061 9,5,2,6,0,9,7,8,3,7,1,1,3,0,6,7,1,3,7,4,7,3,4,8,0,7,3,7,9,2,3,6,0,7, %T A199061 0,5,8,6,4,4,5,2,8,6,2,8,1,4,1,4,5,1,1,1,7,3,6,0,8,6,8,2,8,4,8,5,0,5, %U A199061 0,2,3,7,8,5,1,3,9,0,0,6,4,0,3,1,9,7,1,4,1,4,7,4,1,2,1,7,9,7,1 %N A199061 Decimal expansion of x<0 satisfying 2*x^2+sin(x)=1. %C A199061 See A198866 for a guide to related sequences. The Mathematica program includes a graph. %H A199061 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A199061 negative: -0.95260978371130671374734807379236070... %e A199061 positive: 0.50711892841537397536307518244985199... %t A199061 a = 2; b = 1; c = 1; %t A199061 f[x_] := a*x^2 + b*Sin[x]; g[x_] := c %t A199061 Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}] %t A199061 r = x /. FindRoot[f[x] == g[x], {x, -.96, -.95}, WorkingPrecision -> 110] %t A199061 RealDigits[r] (* A199061 *) %t A199061 r = x /. FindRoot[f[x] == g[x], {x, .50, .51}, WorkingPrecision -> 110] %t A199061 RealDigits[r] (* A199062 *) %Y A199061 Cf. A198866. %K A199061 nonn,cons %O A199061 0,1 %A A199061 _Clark Kimberling_, Nov 02 2011