cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A199063 Decimal expansion of x<0 satisfying 2*x^2+sin(x)=2.

This page as a plain text file.
%I A199063 #9 Feb 07 2025 16:44:05
%S A199063 1,2,1,1,6,5,1,2,8,2,4,3,1,5,7,7,1,2,2,6,9,0,9,7,0,1,0,8,4,4,1,9,6,8,
%T A199063 6,5,3,8,7,2,9,2,3,0,5,2,8,3,3,6,0,1,1,1,9,8,0,8,8,1,6,3,1,1,7,1,6,8,
%U A199063 4,2,3,2,7,9,2,2,2,0,9,0,7,0,2,1,1,1,7,4,2,1,0,3,4,5,0,7,9,1,8
%N A199063 Decimal expansion of x<0 satisfying 2*x^2+sin(x)=2.
%C A199063 See A198866 for a guide to related sequences. The Mathematica program includes a graph.
%H A199063 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>.
%e A199063 negative: -1.21165128243157712269097010844196865387...
%e A199063 positive:  0.80067830457009112112413406604532756205...
%t A199063 a = 2; b = 1; c = 2;
%t A199063 f[x_] := a*x^2 + b*Sin[x]; g[x_] := c
%t A199063 Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}]
%t A199063 r = x /. FindRoot[f[x] == g[x], {x, -1.3, -1.2}, WorkingPrecision -> 110]
%t A199063 RealDigits[r](* A199063 *)
%t A199063 r = x /. FindRoot[f[x] == g[x], {x, .80, .81}, WorkingPrecision -> 110]
%t A199063 RealDigits[r](* A199064 *)
%Y A199063 Cf. A198866.
%K A199063 nonn,cons
%O A199063 1,2
%A A199063 _Clark Kimberling_, Nov 02 2011