A199067 Decimal expansion of x < 0 satisfying 2*x^2+2*sin(x) = 1.
1, 1, 9, 6, 0, 8, 2, 0, 3, 3, 2, 9, 7, 1, 3, 4, 8, 1, 9, 1, 4, 5, 6, 2, 1, 9, 5, 2, 9, 4, 1, 0, 4, 3, 2, 1, 1, 5, 9, 7, 2, 0, 4, 7, 1, 5, 9, 5, 9, 6, 8, 3, 8, 0, 5, 1, 0, 2, 3, 8, 0, 7, 4, 0, 4, 9, 8, 1, 6, 1, 1, 3, 2, 3, 3, 5, 5, 1, 9, 8, 2, 1, 9, 3, 1, 4, 3, 5, 8, 7, 7, 9, 5, 7, 3, 7, 8, 6, 2, 5
Offset: 1
Examples
negative: -1.19608203329713481914562195294104321159720... positive: 0.37088734011199207060142934573448899294899...
Crossrefs
Cf. A198866.
Programs
-
Mathematica
a = 2; b = 2; c = 1; f[x_] := a*x^2 + b*Sin[x]; g[x_] := c Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, -1.2, -1.1}, WorkingPrecision -> 110] RealDigits[r] (* A199067 *) r = x /. FindRoot[f[x] == g[x], {x, .37, .38}, WorkingPrecision -> 110] RealDigits[r] (* A199068 *)
Extensions
a(92) onwards corrected by Georg Fischer, Aug 01 2021
Comments