This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A199073 #10 Feb 07 2025 16:44:05 %S A199073 1,5,8,1,1,1,3,5,8,4,2,6,8,0,1,2,6,2,3,6,2,3,5,1,3,3,0,1,1,3,1,8,9,6, %T A199073 6,7,8,7,2,0,2,3,7,3,1,0,7,9,2,1,8,9,5,8,1,2,5,2,1,2,1,0,4,8,8,9,3,3, %U A199073 9,5,3,3,2,1,6,1,0,1,2,1,9,4,3,5,4,0,9,3,2,0,7,4,2,5,9,6,1,2,7 %N A199073 Decimal expansion of x<0 satisfying 2*x^2+3*sin(x)=2. %C A199073 See A198866 for a guide to related sequences. The Mathematica program includes a graph. %H A199073 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A199073 negative: -1.5811135842680126236235133011318966... %e A199073 positive: 0.5132747777025682345171850420249902... %t A199073 a = 2; b = 3; c = 2; %t A199073 f[x_] := a*x^2 + b*Sin[x]; g[x_] := c %t A199073 Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}] %t A199073 r = x /. FindRoot[f[x] == g[x], {x, -1.6, -1.5}, WorkingPrecision -> 110] %t A199073 RealDigits[r](* A199073 *) %t A199073 r = x /. FindRoot[f[x] == g[x], {x, .51, .52}, WorkingPrecision -> 110] %t A199073 RealDigits[r](* A199074 *) %o A199073 (PARI) solve(x=1,2, 2*x^2-3*sin(x)-2) \\ _Charles R Greathouse IV_, Dec 06 2016 %Y A199073 Cf. A198866. %K A199073 nonn,cons %O A199073 1,2 %A A199073 _Clark Kimberling_, Nov 03 2011