This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A199082 #14 Feb 07 2025 16:44:05 %S A199082 1,9,6,1,8,8,4,2,4,6,4,1,0,8,3,4,8,9,3,4,1,9,2,8,0,7,7,9,7,7,4,8,9,4, %T A199082 2,6,8,2,5,7,4,7,1,2,0,7,1,2,7,2,1,8,6,6,5,5,2,0,8,9,8,6,8,6,9,2,3,2, %U A199082 5,8,8,5,0,6,8,5,9,0,3,7,8,4,0,1,3,8,9,0,9,6,5,8,4,8,8,1,9,0,4 %N A199082 Decimal expansion of x < 0 satisfying x^2 + 2*sin(x) = 2. %C A199082 See A198866 for a guide to related sequences. The Mathematica program includes a graph. %H A199082 G. C. Greubel, <a href="/A199082/b199082.txt">Table of n, a(n) for n = 1..10000</a> %H A199082 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A199082 negative: -1.96188424641083489341928077977489... %e A199082 positive: 0.77498081442304344595859350247040... %t A199082 a = 1; b = 2; c = 2; %t A199082 f[x_] := a*x^2 + b*Sin[x]; g[x_] := c %t A199082 Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}] %t A199082 r = x /. FindRoot[f[x] == g[x], {x, -1.97, -1.96}, WorkingPrecision -> 110] %t A199082 RealDigits[r](* A199082 *) %t A199082 r = x /. FindRoot[f[x] == g[x], {x, .77, .78}, WorkingPrecision -> 110] %t A199082 RealDigits[r](* A199083 *) %o A199082 (PARI) a=1; b=2; c=2; solve(x=-2, 0, a*x^2 + b*sin(x) - c) \\ _G. C. Greubel_, Feb 20 2019 %o A199082 (Sage) a=1; b=2; c=2; (a*x^2 + b*sin(x)==c).find_root(-2,0,x) # _G. C. Greubel_, Feb 20 2019 %Y A199082 Cf. A198866, A199083. %K A199082 nonn,cons %O A199082 1,2 %A A199082 _Clark Kimberling_, Nov 02 2011