This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A199086 #41 Oct 27 2023 19:12:24 %S A199086 1,1,2,1,2,3,1,2,2,5,1,2,2,4,7,1,2,2,3,4,11,1,2,2,3,4,7,15,1,2,2,3,3, %T A199086 5,8,22,1,2,2,3,3,5,6,12,30,1,2,2,3,3,4,5,9,14,42,1,2,2,3,3,4,5,7,10, %U A199086 21,56,1,2,2,3,3,4,4,6,8,13,24,77,1,2,2,3,3,4,4,6,7,11,17,34,101,1,2,2,3,3,4,4,5 %N A199086 T(n,k) = Number of partitions of n+2k-2 into parts >= k. %C A199086 Row n goes to floor(n/2)+1 %C A199086 Table starts %C A199086 ...1...1...1..1..1..1..1..1..1..1..1..1..1..1..1..1..1..1..1..1..1..1..1..1..1 %C A199086 ...2...2...2..2..2..2..2..2..2..2..2..2..2..2..2..2..2..2..2..2..2..2..2..2..2 %C A199086 ...3...2...2..2..2..2..2..2..2..2..2..2..2..2..2..2..2..2..2..2..2..2..2..2..2 %C A199086 ...5...4...3..3..3..3..3..3..3..3..3..3..3..3..3..3..3..3..3..3..3..3..3..3..3 %C A199086 ...7...4...4..3..3..3..3..3..3..3..3..3..3..3..3..3..3..3..3..3..3..3..3..3..3 %C A199086 ..11...7...5..5..4..4..4..4..4..4..4..4..4..4..4..4..4..4..4..4..4..4..4..4..4 %C A199086 ..15...8...6..5..5..4..4..4..4..4..4..4..4..4..4..4..4..4..4..4..4..4..4..4..4 %C A199086 ..22..12...9..7..6..6..5..5..5..5..5..5..5..5..5..5..5..5..5..5..5..5..5..5..5 %C A199086 ..30..14..10..8..7..6..6..5..5..5..5..5..5..5..5..5..5..5..5..5..5..5..5..5..5 %C A199086 ..42..21..13.11..9..8..7..7..6..6..6..6..6..6..6..6..6..6..6..6..6..6..6..6..6 %C A199086 ..56..24..17.12.10..9..8..7..7..6..6..6..6..6..6..6..6..6..6..6..6..6..6..6..6 %C A199086 ..77..34..21.16.13.11.10..9..8..8..7..7..7..7..7..7..7..7..7..7..7..7..7..7..7 %C A199086 .101..41..25.18.15.12.11.10..9..8..8..7..7..7..7..7..7..7..7..7..7..7..7..7..7 %C A199086 .135..55..33.24.18.16.13.12.11.10..9..9..8..8..8..8..8..8..8..8..8..8..8..8..8 %C A199086 .176..66..39.27.21.17.15.13.12.11.10..9..9..8..8..8..8..8..8..8..8..8..8..8..8 %C A199086 .231..88..49.34.26.21.18.16.14.13.12.11.10.10..9..9..9..9..9..9..9..9..9..9..9 %C A199086 .297.105..60.39.30.24.20.17.16.14.13.12.11.10.10..9..9..9..9..9..9..9..9..9..9 %C A199086 .385.137..73.50.36.29.24.21.18.17.15.14.13.12.11.11.10.10.10.10.10.10.10.10.10 %C A199086 .490.165..88.57.42.32.27.23.20.18.17.15.14.13.12.11.11.10.10.10.10.10.10.10.10 %C A199086 .627.210.110.70.50.40.32.27.24.21.19.18.16.15.14.13.12.12.11.11.11.11.11.11.11 %H A199086 R. H. Hardin and Alois P. Heinz, <a href="/A199086/b199086.txt">Table of n, a(n) for n = 1..10011</a> %F A199086 G.f. of column k: x^(2-2*k) * Product_{j>=k} 1/(1-x^j). - _Alois P. Heinz_, Nov 06 2011 %e A199086 All solutions for n=5, k=3: 3+3+3, 3+6, 4+5, 9. %p A199086 b:= proc(n, i) option remember; %p A199086 if n<0 then 0 %p A199086 elif n=0 then 1 %p A199086 elif i>n then 0 %p A199086 else b(n-i, i) +b(n, i+1) %p A199086 fi %p A199086 end: %p A199086 T:= (n, k)-> b(n+2*k-2, k): %p A199086 seq(seq(T(n, d+1-n), n=1..d), d=1..20); # _Alois P. Heinz_, Nov 06 2011 %t A199086 b[n_, i_] := b[n, i] = Which[n < 0, 0, n == 0, 1, i > n, 0, True, b[n - i, i] + b[n, i + 1]]; T[n_, k_] := b[n + 2*k - 2, k]; Table[Table[T[n, d + 1 - n], {n, 1, d}], {d, 1, 20}] // Flatten (* _Jean-François Alcover_, Jan 23 2016, after _Alois P. Heinz_ *) %Y A199086 Column 1 is A000041 %Y A199086 Column 2 is A002865(n+2) %Y A199086 Column 3 is A008483(n+4) %Y A199086 Column 4 is A008484(n+6) %Y A199086 Column 5 is A026798(n+13) %Y A199086 Column 6 is A026799(n+16) %Y A199086 Column 7 is A026800(n+19) %Y A199086 Column 8 is A026801(n+22) %Y A199086 Column 9 is A026802(n+25) %Y A199086 Column 10 is A026803(n+28) %K A199086 nonn,tabl %O A199086 1,3 %A A199086 _R. H. Hardin_, Nov 06 2011