This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A199152 #8 Feb 07 2025 16:44:05 %S A199152 9,3,1,9,4,4,5,3,9,1,9,6,5,7,4,8,0,8,7,5,7,9,9,4,8,2,2,2,1,9,0,3,5,7, %T A199152 7,7,4,3,2,4,1,6,3,2,3,9,2,4,2,2,3,1,3,6,1,2,1,0,2,9,6,0,5,1,6,3,7,4, %U A199152 3,3,6,3,4,4,7,8,0,9,1,8,6,6,5,1,4,5,5,7,1,6,5,7,7,3,9,3,4,5,5 %N A199152 Decimal expansion of x<0 satisfying 3*x^2+2*sin(x)=1. %C A199152 See A198866 for a guide to related sequences. The Mathematica program includes a graph. %H A199152 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A199152 negative: -0.93194453919657480875799482221903577743... %e A199152 positive: 0.33648270192335281577039493761106778144... %t A199152 a = 3; b = 2; c = 1; %t A199152 f[x_] := a*x^2 + b*Sin[x]; g[x_] := c %t A199152 Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}] %t A199152 r = x /. FindRoot[f[x] == g[x], {x, -.94, -.93}, WorkingPrecision -> 110] %t A199152 RealDigits[r] (* A199152 *) %t A199152 r = x /. FindRoot[f[x] == g[x], {x, .33, .34}, WorkingPrecision -> 110] %t A199152 RealDigits[r] (* A199153 *) %Y A199152 Cf. A198866. %K A199152 nonn,cons %O A199152 0,1 %A A199152 _Clark Kimberling_, Nov 03 2011