This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A199158 #8 Feb 07 2025 16:44:05 %S A199158 1,1,0,8,2,6,9,4,4,7,3,9,3,7,1,0,5,4,6,7,2,8,0,0,8,2,1,5,8,6,1,4,9,9, %T A199158 7,4,2,3,3,7,9,6,7,1,6,5,5,7,5,2,2,3,7,1,4,8,4,2,1,2,8,1,3,3,5,5,5,8, %U A199158 5,9,1,4,9,1,9,2,6,4,1,9,0,2,5,9,8,9,1,9,8,5,7,8,0,4,4,0,9,2,3 %N A199158 Decimal expansion of x<0 satisfying 3*x^2+3*sin(x)=1. %C A199158 See A198866 for a guide to related sequences. The Mathematica program includes a graph. %H A199158 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A199158 negative: -1.1082694473937105467280082158614997423379... %e A199158 positive: 0.2658016271983479815831296920342773310942... %t A199158 a = 3; b = 3; c = 1; %t A199158 f[x_] := a*x^2 + b*Sin[x]; g[x_] := c %t A199158 Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}] %t A199158 r = x /. %t A199158 FindRoot[f[x] == g[x], {x, -1.2, -1.1}, WorkingPrecision -> 110] %t A199158 RealDigits[r] (* A199158 *) %t A199158 r = x /. FindRoot[f[x] == g[x], {x, .26, .27}, WorkingPrecision -> 110] %t A199158 RealDigits[r] (* A199159 *) %Y A199158 Cf. A198866. %K A199158 nonn,cons %O A199158 1,4 %A A199158 _Clark Kimberling_, Nov 03 2011