This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A199159 #8 Feb 07 2025 16:44:05 %S A199159 2,6,5,8,0,1,6,2,7,1,9,8,3,4,7,9,8,1,5,8,3,1,2,9,6,9,2,0,3,4,2,7,7,3, %T A199159 3,1,0,9,4,2,5,9,8,1,8,9,2,7,7,1,4,0,5,3,9,9,3,5,9,4,6,6,6,3,9,9,3,0, %U A199159 9,7,9,2,6,1,6,1,5,6,7,4,6,9,5,6,1,5,3,8,1,3,7,4,8,7,3,7,9,6,4 %N A199159 Decimal expansion of x>0 satisfying 3*x^2+3*sin(x)=1. %C A199159 See A198866 for a guide to related sequences. The Mathematica program includes a graph. %H A199159 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A199159 negative: -1.1082694473937105467280082158614997423379... %e A199159 positive: 0.2658016271983479815831296920342773310942... %t A199159 a = 3; b = 3; c = 1; %t A199159 f[x_] := a*x^2 + b*Sin[x]; g[x_] := c %t A199159 Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}] %t A199159 r = x /. %t A199159 FindRoot[f[x] == g[x], {x, -1.2, -1.1}, WorkingPrecision -> 110] %t A199159 RealDigits[r] (* A199158 *) %t A199159 r = x /. FindRoot[f[x] == g[x], {x, .26, .27}, WorkingPrecision -> 110] %t A199159 RealDigits[r] (* A199159 *) %Y A199159 Cf. A198866. %K A199159 nonn,cons %O A199159 0,1 %A A199159 _Clark Kimberling_, Nov 03 2011