This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A199170 #11 Jan 30 2025 16:04:18 %S A199170 1,1,9,8,3,5,9,8,4,4,5,1,8,6,6,0,2,6,8,2,6,5,0,2,1,6,0,3,4,3,0,3,0,8, %T A199170 9,8,9,2,7,2,6,8,0,9,3,5,8,7,4,8,2,5,6,9,0,1,4,4,4,9,2,3,8,6,8,6,4,2, %U A199170 7,1,7,6,1,4,9,7,1,9,1,2,5,5,9,1,7,1,4,2,8,9,1,6,9,7,2,0,9,5,4 %N A199170 Decimal expansion of x<0 satisfying x^2+x*cos(x)=1. %C A199170 For many choices of a,b,c, there are exactly two numbers x satisfying a*x^2+b*x*cos(x)=c. %C A199170 Guide to related sequences, with graphs included in Mathematica programs: %C A199170 a.... b.... c.... x %C A199170 1.... 1.... 1.... A199170, A199171 %C A199170 1.... 1.... 2.... A199172, A199173 %C A199170 1.... 1.... 3.... A199174, A199175 %C A199170 1.... 2.... 1.... A199176, A199177 %C A199170 1.... 2.... 2.... A199178, A199179 %C A199170 1.... 2.... 3.... A199180, A199181 %C A199170 1.... 3.... 1.... A199182, A199183 %C A199170 1.... 3.... 2.... A199184, A199185 %C A199170 1.... 3.... 3.... A199186, A199187 %C A199170 2.... 1.... 1.... A199188, A199189 %C A199170 2.... 1.... 2.... A199265, A199266 %C A199170 2.... 1.... 3.... A199267, A199268 %C A199170 2.... 2.... 1.... A199269, A199270 %C A199170 2.... 2.... 3.... A199271, A199272 %C A199170 2.... 3.... 1.... A199273, A199274 %C A199170 2.... 3.... 2.... A199275, A199276 %C A199170 2.... 3.... 3.... A199277, A199278 %C A199170 3.... 1.... 1.... A199279, A199280 %C A199170 3.... 1.... 2.... A199281, A199282 %C A199170 3.... 1.... 3.... A199283, A199284 %C A199170 3.... 2.... 1.... A199285, A199286 %C A199170 3.... 2.... 2.... A199287, A199288 %C A199170 3.... 2.... 3.... A199289, A199290 %C A199170 3.... 3.... 1.... A199291, A199292 %C A199170 3.... 3.... 2.... A199293, A199294 %C A199170 Suppose that f(x,u,v) is a function of three real variables and that g(u,v) is a function defined implicitly by f(g(u,v),u,v)=0. We call the graph of z=g(u,v) an implicit surface of f. %C A199170 For an example related to A199170, take f(x,u,v)=x^2+u*xcos(x)-v and g(u,v) = a nonzero solution x of f(x,u,v)=0. If there is more than one nonzero solution, care must be taken to ensure that the resulting function g(u,v) is single-valued and continuous. A portion of an implicit surface is plotted by Program 2 in the Mathematica section. %H A199170 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A199170 negative: -1.19835984451866026826502160343030898927268... %e A199170 positive: 0.685174133854503187895211530638458709591... %t A199170 (* Program 1: A199170 and A199171 *) %t A199170 a = 1; b = 1; c = 1; %t A199170 f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c %t A199170 Plot[{f[x], g[x]}, {x, -2 Pi, 2 Pi}, {AxesOrigin -> {0, 0}}] %t A199170 r = x /. FindRoot[f[x] == g[x], {x, -1.2, -1.1}, WorkingPrecision -> 110] %t A199170 RealDigits[r] (* A199170 *) %t A199170 r = x /. FindRoot[f[x] == g[x], {x, .68, .69}, WorkingPrecision -> 110] %t A199170 RealDigits[r] (* A199171 *) %t A199170 (* Program 2: implicit surface of x^2+u*x*cos(x)=v *) %t A199170 f[{x_, u_, v_}] := x^2 + u*x*Cos[x] - v; %t A199170 t = Table[{u, v, x /. FindRoot[f[{x, u, v}] == 0, {x, 0, 1}]}, {u, 0, %t A199170 1.9}, {v, u, 600}]; %t A199170 ListPlot3D[Flatten[t, 1]] (* for A199170 *) %Y A199170 Cf. A199171, A197737, A198414, A198755, A198866. %K A199170 nonn,cons %O A199170 1,3 %A A199170 _Clark Kimberling_, Nov 03 2011