This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A199271 #8 Feb 07 2025 16:44:05 %S A199271 1,3,4,2,9,0,5,1,2,2,3,2,9,3,5,6,1,5,7,7,9,5,6,2,9,2,5,8,3,8,2,8,2,5, %T A199271 8,2,5,1,7,0,3,3,5,1,8,8,6,9,9,2,5,8,8,4,3,2,8,6,4,6,8,6,8,3,2,9,8,0, %U A199271 6,6,7,4,7,5,6,5,6,3,3,0,0,9,2,1,8,5,3,7,1,2,7,1,9,2,1,4,9,8,1 %N A199271 Decimal expansion of x<0 satisfying 2*x^2+2*x*cos(x)=3. %C A199271 See A199170 for a guide to related sequences. The Mathematica program includes a graph. %H A199271 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A199271 negative: -1.342905122329356157795629258382825825170... %e A199271 positive: 0.976312273615130123076470141335091567967... %t A199271 a = 2; b = 2; c = 3; %t A199271 f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c %t A199271 Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}] %t A199271 r = x /. FindRoot[f[x] == g[x], {x, -1.35, -1.34}, WorkingPrecision -> 110] %t A199271 RealDigits[r] (* A199271 *) %t A199271 r = x /. FindRoot[f[x] == g[x], {x, .97, .98}, WorkingPrecision -> 110] %t A199271 RealDigits[r] (* A199272 *) %Y A199271 Cf. A199170. %K A199271 nonn,cons %O A199271 1,2 %A A199271 _Clark Kimberling_, Nov 04 2011