This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A199272 #8 Feb 07 2025 16:44:05 %S A199272 9,7,6,3,1,2,2,7,3,6,1,5,1,3,0,1,2,3,0,7,6,4,7,0,1,4,1,3,3,5,0,9,1,5, %T A199272 6,7,9,6,7,9,5,3,4,3,8,0,9,3,0,7,2,6,9,5,0,4,9,1,0,7,1,7,6,4,3,2,7,7, %U A199272 0,7,7,1,5,4,3,2,7,9,7,2,8,5,0,0,3,9,9,2,7,6,7,2,6,5,1,8,8,3,9 %N A199272 Decimal expansion of x>0 satisfying 2*x^2+2*x*cos(x)=3. %C A199272 See A199170 for a guide to related sequences. The Mathematica program includes a graph. %H A199272 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A199272 negative: -1.342905122329356157795629258382825825170... %e A199272 positive: 0.976312273615130123076470141335091567967... %t A199272 a = 2; b = 2; c = 3; %t A199272 f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c %t A199272 Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}] %t A199272 r = x /. FindRoot[f[x] == g[x], {x, -1.35, -1.34}, WorkingPrecision -> 110] %t A199272 RealDigits[r] (* A199271 *) %t A199272 r = x /. FindRoot[f[x] == g[x], {x, .97, .98}, WorkingPrecision -> 110] %t A199272 RealDigits[r] (* A199272 *) %Y A199272 Cf. A199170. %K A199272 nonn,cons %O A199272 0,1 %A A199272 _Clark Kimberling_, Nov 04 2011