This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A199292 #8 Feb 07 2025 16:44:05 %S A199292 2,7,0,1,5,0,2,8,9,6,3,1,8,0,3,2,5,8,0,2,0,9,7,7,8,4,6,1,2,6,9,8,6,0, %T A199292 4,4,6,0,7,8,8,6,9,5,1,4,6,6,2,3,2,3,5,2,8,3,8,1,5,8,4,6,7,7,6,1,8,7, %U A199292 5,8,8,2,1,3,0,7,1,2,3,6,4,2,1,7,1,3,3,4,7,2,5,8,6,4,3,8,3,1,5 %N A199292 Decimal expansion of x>0 satisfying 3*x^2+3*x*cos(x)=1. %C A199292 See A199170 for a guide to related sequences. The Mathematica program includes a graph. %H A199292 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A199292 negative: -0.942013171745925470278385478816333... %e A199292 positive: 0.2701502896318032580209778461269860... %t A199292 a = 3; b = 3; c = 1; %t A199292 f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c %t A199292 Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}] %t A199292 r = x /. FindRoot[f[x] == g[x], {x, -1, -.9}, WorkingPrecision -> 110] %t A199292 RealDigits[r] (* A199291 *) %t A199292 r = x /. FindRoot[f[x] == g[x], {x, .27, .28}, WorkingPrecision -> 110] %t A199292 RealDigits[r] (* A199292 *) %Y A199292 Cf. A199170. %K A199292 nonn,cons %O A199292 0,1 %A A199292 _Clark Kimberling_, Nov 05 2011