This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A199302 #19 Sep 08 2022 08:46:00 %S A199302 2,11,101,1021,1201,110221,111211,112111,120121,121021,122011,1000211, %T A199302 1010201,1020101,1022011,1022201,1101211,1102111,1102201,1111021, %U A199302 1112011,1120001,1120121,1120211,1121011,1201021,1201111,1210211,1212121,1221221,10002121 %N A199302 Palindromic primes in the sense of A007500 with digits '0', '1' and '2' only. %C A199302 All terms except for the initial 2 start and end in the digit 1. %o A199302 (PARI) allow=Vec("012");forprime(p=1,default(primelimit),setminus( Set( Vec(Str( p ))),allow)&next;isprime(A004086(p))&print1(p",")) /* better use the much more efficient code below */ %o A199302 (PARI) a(n=50,list=0,L=[0,1,2],needpal=1)={ for(d=1,1e9, u=vector(d,i,10^(d-i))~; forvec(v=vector(d,i,[1+(i==1&!L[1]),#L]), isprime(t=vector(d,i,L[v[i]])*u) || next; needpal & !isprime(A004086(t)) & next; list & print1(t","); n-- || return(t)))} \\ _M. F. Hasler_, Nov 06 2011 %o A199302 (Magma) [p: p in PrimesUpTo(10^8) | Set(Intseq(p)) subset [0..2] and IsPrime(Seqint(Reverse(Intseq(p))))]; // _Bruno Berselli_, Nov 07 2011 %o A199302 (Python) %o A199302 from itertools import count, islice, product %o A199302 from sympy import isprime %o A199302 def A199302_gen(): return (n for n in (int(t+''.join(s)) for l in count(0) for t in '12' for s in product('012',repeat=l)) if isprime(n) and isprime(int(str(n)[::-1]))) %o A199302 A199302_list = list(islice(A199302_gen(),20)) # _Chai Wah Wu_, Jan 04 2022 %Y A199302 Cf. A020449 - A020472, A199325 - A199329, A199303 - A199306. %K A199302 nonn,base %O A199302 1,1 %A A199302 _M. F. Hasler_, Nov 04 2011