This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A199307 #32 Sep 08 2022 08:46:00 %S A199307 5,109,257,1373,2917,4001,27437,62501,157217,202613,237277,296353, %T A199307 470597,629857,665501,1492993,1556069,1898209,2456501,2634013,3217429, %U A199307 3322337,4244833,5038849,5180117,6572129,10512289,11453153,12706093 %N A199307 Primes of the form 4n^3 + 1. %C A199307 Dirichlet's theorem on primes in arithmetic progressions tells us, for example, that there are infinitely many primes of the form 4n+1. For primes represented by polynomials of degree greater than 1, the Bateman-Horn paper gives a conjecture on the density. %H A199307 Vincenzo Librandi, <a href="/A199307/b199307.txt">Table of n, a(n) for n = 1..1000</a> %H A199307 P. Bateman and R. A. Horn, <a href="https://doi.org/10.1090/S0025-5718-1962-0148632-7">A heuristic asymptotic formula concerning the distribution of prime numbers</a>, Mathematics of Computation, 16 (1962), 363-367. %H A199307 Wikipedia, <a href="http://en.wikipedia.org/wiki/Bateman%E2%80%93Horn_conjecture">Bateman-Horn Conjecture</a> %t A199307 Select[Table[4n^3+1,{n,1100}],PrimeQ] (* _Vincenzo Librandi_, Aug 01 2012 *) %o A199307 (Magma) [ a: n in [0..200] | IsPrime(a) where a is 4*n^3+1 ]; // _Vincenzo Librandi_, Nov 08 2011 %o A199307 (PARI) for(n=1,1e3,if(isprime(t=4*n^3+1),print1(t", "))) \\ _Charles R Greathouse IV_, Nov 21 2011 %Y A199307 Cf. A115104, A001912, A002496, A005574. %K A199307 nonn,easy %O A199307 1,1 %A A199307 _N. J. A. Sloane_, Nov 05 2011