cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A199325 Primes having only {0, 1, 5} as digits.

This page as a plain text file.
%I A199325 #25 Jul 14 2025 17:25:13
%S A199325 5,11,101,151,1051,1151,1511,5011,5051,5101,5501,10111,10151,10501,
%T A199325 11551,15101,15511,15551,50051,50101,50111,50551,51001,51151,51511,
%U A199325 51551,55001,55051,55501,55511,100151,100501,100511,101051,101111,101501,110051,110501,115001,115151,150001,150011,150151,150551
%N A199325 Primes having only {0, 1, 5} as digits.
%H A199325 Robert Israel, <a href="/A199325/b199325.txt">Table of n, a(n) for n = 1..10000</a>
%H A199325 <a href="/index/Pri#PrimesWithDigits">Index to entries about primes with digits in a given set</a>
%p A199325 N:= 10000: # to get the first N terms
%p A199325 count:= 0:
%p A199325 allowed:= {0,1,5}:
%p A199325 nallowed:= nops(allowed):
%p A199325 subst:= seq(i=allowed[i+1],i=0..nallowed-1):
%p A199325 for d from 0 while count < N do
%p A199325   for x1 from 1 to nallowed-1 while count < N do
%p A199325     for t from 0 to nallowed^d-1 while count < N do
%p A199325       L:= subs(subst,convert(x1*nallowed^d+t,base,nallowed));
%p A199325       X:= add(L[i]*10^(i-1),i=1..d+1);
%p A199325       if isprime(X) then
%p A199325           count:= count+1;
%p A199325           A[count]:= X;
%p A199325       fi
%p A199325 od od od:
%p A199325 seq(A[n],n=1..N); # _Robert Israel_, Apr 20 2014
%t A199325 Select[FromDigits/@Tuples[{0,1,5},6],PrimeQ] (* _Harvey P. Dale_, Jul 23 2021 *)
%o A199325 (PARI) L=[0,1,5];for(d=1,6,u=vector(d,i,10^(d-i))~;forvec(v=vector(d,i,[1+(i==1 & !L[1]),#L]),ispseudoprime(t=vector(d,i,L[v[i]])*u)&print1(t",")))  /* see A199327 for a function a(n) */
%o A199325 (Magma) [p: p in PrimesUpTo(160000) | Set(Intseq(p)) subset [0, 1, 5]]; // _Vincenzo Librandi_, Apr 22 2014
%Y A199325 Cf. A020449 - A020472, A199326 - A199329, A061247, A199340 - A199349.
%K A199325 nonn,base
%O A199325 1,1
%A A199325 _M. F. Hasler_, Nov 05 2011