This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A199328 #24 Aug 14 2025 14:59:25 %S A199328 11,101,181,1181,1811,18181,108881,110881,118081,180181,180811,181081, %T A199328 188011,188801,1008001,1088081,1110881,1180811,1181881,1808801, %U A199328 1880111,1880881,1881811,1881881,10001081,10001801,10011101,10080011,10101181,10111001,10111081,10180801,10188811,10808101,10810001 %N A199328 Palindromic primes in the sense of A007500 with digits '0', '1' and '8' only. %H A199328 Harvey P. Dale, <a href="/A199328/b199328.txt">Table of n, a(n) for n = 1..10000</a> (First 4188 terms from Chai Wah Wu.) %t A199328 Select[10#+1&/@FromDigits/@Tuples[{0,1,8},7],AllTrue[{#,IntegerReverse[#]},PrimeQ]&] (* _Harvey P. Dale_, Mar 28 2025 *) %o A199328 (PARI) a(n=50,L=[0,1,8],show=0)={my(t);for(d=1,1e9,u=vector(d,i,10^(d-i))~;forvec(v=vector(d,i,[1+(i==1&!L[1]),#L]),isprime(t=vector(d,i,L[v[i]])*u)||next;isprime(A004086(t))||next;show&print1(t",");n--||return(t)))} %o A199328 (Python) %o A199328 from itertools import product %o A199328 from sympy import isprime %o A199328 A199328_list = [n for n in (int(''.join(s)) for s in product('018',repeat=10)) if isprime(n) and isprime(int(str(n)[::-1]))] # _Chai Wah Wu_, Dec 17 2015 %Y A199328 Intersection of A007500 and A061247. %Y A199328 Cf. A020449-A020472, A199325-A199329. %K A199328 nonn,base %O A199328 1,1 %A A199328 _M. F. Hasler_, Nov 05 2011