cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A199328 Palindromic primes in the sense of A007500 with digits '0', '1' and '8' only.

This page as a plain text file.
%I A199328 #24 Aug 14 2025 14:59:25
%S A199328 11,101,181,1181,1811,18181,108881,110881,118081,180181,180811,181081,
%T A199328 188011,188801,1008001,1088081,1110881,1180811,1181881,1808801,
%U A199328 1880111,1880881,1881811,1881881,10001081,10001801,10011101,10080011,10101181,10111001,10111081,10180801,10188811,10808101,10810001
%N A199328 Palindromic primes in the sense of A007500 with digits '0', '1' and '8' only.
%H A199328 Harvey P. Dale, <a href="/A199328/b199328.txt">Table of n, a(n) for n = 1..10000</a> (First 4188 terms from Chai Wah Wu.)
%t A199328 Select[10#+1&/@FromDigits/@Tuples[{0,1,8},7],AllTrue[{#,IntegerReverse[#]},PrimeQ]&] (* _Harvey P. Dale_, Mar 28 2025 *)
%o A199328 (PARI) a(n=50,L=[0,1,8],show=0)={my(t);for(d=1,1e9,u=vector(d,i,10^(d-i))~;forvec(v=vector(d,i,[1+(i==1&!L[1]),#L]),isprime(t=vector(d,i,L[v[i]])*u)||next;isprime(A004086(t))||next;show&print1(t",");n--||return(t)))}
%o A199328 (Python)
%o A199328 from itertools import product
%o A199328 from sympy import isprime
%o A199328 A199328_list = [n for n in (int(''.join(s)) for s in product('018',repeat=10)) if isprime(n) and isprime(int(str(n)[::-1]))] # _Chai Wah Wu_, Dec 17 2015
%Y A199328 Intersection of A007500 and A061247.
%Y A199328 Cf. A020449-A020472, A199325-A199329.
%K A199328 nonn,base
%O A199328 1,1
%A A199328 _M. F. Hasler_, Nov 05 2011