A199339 a(n) = number of primes with an even digit sum among the first n primes minus the number with an odd digit sum.
1, 0, -1, -2, -1, 0, 1, 2, 1, 0, 1, 2, 1, 0, -1, 0, 1, 0, -1, 0, 1, 2, 1, 0, 1, 2, 3, 4, 5, 4, 5, 4, 3, 2, 3, 2, 1, 2, 3, 2, 1, 2, 1, 0, -1, -2, -1, -2, -3, -4, -3, -2, -3, -2, -1, -2, -3, -2, -1, -2, -3, -2, -1, -2, -3, -4, -5, -6, -5, -4, -5, -6, -5, -6
Offset: 1
Examples
a(1)=1 because the first prime has an even sum of digits. a(2)=0, a(3)=-1, a(4)=-2 because the following primes (3,5,7) have odd sum of digits. a(5)=-1, a(6)=0, a(7)=1, a(8)=2 because the 5th, 6th, 7th and 8th prime (11, 13, 17, 19) have an even sum of digits.
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- CNRS Press release, The sum of digits of prime numbers is evenly distributed, May 12, 2010.
- Christian Mauduit and Joël Rivat, Sur un problème de Gelfond: la somme des chiffres des nombres premiers, Annals Math., 171 (2010), 1591-1646.
- ScienceDaily, Sum of Digits of Prime Numbers Is Evenly Distributed: New Mathematical Proof of Hypothesis, May 12, 2010.
Crossrefs
Programs
-
Mathematica
a[1] := 1; a[n_] := a[n] = a[n - 1] + (-1)^(Plus@@IntegerDigits[Prime[n]]); Table[a[n], {n, 74}] (* Alonso del Arte, Nov 14 2011 *)
-
PARI
s=0;vector(90,n,s+=(-1)^A007953(prime(n)))