This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A199341 #20 Jul 15 2025 10:51:44 %S A199341 3,11,13,31,41,43,113,131,311,313,331,431,433,443,1433,3313,3331,3343, %T A199341 3413,3433,4111,4133,4441,11113,11131,11311,11411,11443,13313,13331, %U A199341 13411,13441,14143,14341,14411,14431,31333,33113,33311,33331,33343,33413,34141,34313 %N A199341 Primes having only {1, 3, 4} as digits. %C A199341 A020451, A020452 and A020461 are subsequences. - _Vincenzo Librandi_, Jul 26 2015 %H A199341 Robert Israel, <a href="/A199341/b199341.txt">Table of n, a(n) for n = 1..10000</a> %H A199341 Andrew Granville, <a href="https://arxiv.org/abs/2308.03126">Missing digits, and good approximations</a>, arXiv:2308.03126 [math.NT], 2023. See p. 4. %p A199341 Dmax:= 5: # to get all terms < 10^Dmax %p A199341 Cd:= {1,3,4}: %p A199341 C:= Cd: %p A199341 for d from 2 to Dmax do %p A199341 Cd:= map(t -> (10*t+1,10*t+3,10*t+4),Cd); %p A199341 C:= C union Cd; %p A199341 od: %p A199341 sort(convert(select(isprime,C),list)); # _Robert Israel_, Jul 26 2015 %t A199341 Select[Prime[Range[4 10^3]], Complement[IntegerDigits[#], {3, 4, 1}]=={} &] (* _Vincenzo Librandi_, Jul 26 2015 *) %o A199341 (PARI) a(n, list=0, L=[1, 3, 4], reqpal=0)={my(t); for(d=1, 1e9, u=vector(d, i, 10^(d-i))~; forvec(v=vector(d, i, [1+(i==1&!L[1]), #L]), isprime(t=vector(d, i, L[v[i]])*u)||next; reqpal & !isprime(A004086(t)) & next; list & print1(t", "); n--||return(t)))} %o A199341 (Magma) [p: p in PrimesUpTo(10^5) | Set(Intseq(p)) subset [3, 4, 1]]; // _Vincenzo Librandi_, Jul 26 2015 %Y A199341 Cf. A020449 - A020472, A199325 - A199329. %Y A199341 Cf. similar sequences listed in A199340. %K A199341 nonn,base %O A199341 1,1 %A A199341 _M. F. Hasler_, Nov 05 2011