This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A199429 #15 Feb 07 2025 20:07:34 %S A199429 6,4,3,4,3,6,3,6,4,1,3,8,0,2,6,1,5,8,6,4,2,0,9,8,9,1,4,3,0,4,0,1,3,1, %T A199429 8,2,6,8,7,4,4,6,7,2,4,1,9,4,5,7,8,5,1,6,3,2,3,8,7,4,9,1,9,8,5,8,8,7, %U A199429 5,2,2,9,2,2,2,7,2,5,9,4,1,7,6,4,1,7,8,8,8,7,0,7,8,5,2,7,8,5,7 %N A199429 Decimal expansion of x>0 satisfying x^2+x*sin(x)=cos(x). %C A199429 For many choices of a,b,c, there is exactly one x>0 satisfying a*x^2+b*x*sin(x)=c*cos(x). %C A199429 Guide to related sequences, with graphs included in Mathematica programs: %C A199429 a.... b.... c.... x %C A199429 1.... 1.... 1.... A199429 %C A199429 1.... 1.... 2.... A199430 %C A199429 1.... 1.... 3.... A199431 %C A199429 1.... 2.... 1.... A199432 %C A199429 1.... 2.... 2.... A199433 %C A199429 1.... 2.... 3.... A199434 %C A199429 1.... 3.... 1.... A199435 %C A199429 1.... 3.... 2.... A199436 %C A199429 1.... 3.... 3.... A199437 %C A199429 2.... 1.... 1.... A199438 %C A199429 2.... 1.... 2.... A199439 %C A199429 2.... 1.... 3.... A199440 %C A199429 2.... 2.... 1.... A199441 %C A199429 2.... 2.... 3.... A199442 %C A199429 2.... 3.... 1.... A199443 %C A199429 2.... 3.... 2.... A199444 %C A199429 2.... 3.... 3.... A199445 %C A199429 2.... 1.... 1.... A199446 %C A199429 3.... 1.... 2.... A199447 %C A199429 3.... 1.... 3.... A199448 %C A199429 3.... 2.... 1.... A199449 %C A199429 3.... 2.... 2.... A199450 %C A199429 3.... 2.... 3.... A199451 %C A199429 3.... 3.... 1.... A199452 %C A199429 3.... 3.... 2.... A199453 %C A199429 1... -1.... 1.... A199454 %C A199429 1... -1.... 2.... A199455 %C A199429 1... -1.... 3.... A199456 %C A199429 1... -2... -3.... A199457 %C A199429 1... -2... -2.... A199458 %C A199429 1... -2... -1.... A199459 %C A199429 1... -2... 0.... A199460 %C A199429 1... -2... 1.... A199461 %C A199429 1... -2... 2.... A199462 %C A199429 1... -2... 3.... A199463 %C A199429 1... -3... -3.... A199464 %C A199429 1... -3... -2.... A199465 %C A199429 1... -3... -1.... A199466 %C A199429 1... -3... 0.... A199467 %C A199429 1... -3... 1.... A199468 %C A199429 1... -3... 2.... A199469 %C A199429 1... -3... 3.... A199470 %C A199429 2... -1... 1.... A199471 %C A199429 2... -1... 2.... A199472 %C A199429 2... -1... 3.... A199473 %C A199429 2... -2... 1.... A199503 %C A199429 2... -2... 3.... A199504 %C A199429 3... -1... 1.... A199505 %C A199429 2... -1... 2.... A199506 %C A199429 2... -1... 3.... A199507 %C A199429 2... -2... 1.... A199508 %C A199429 2... -2... 2.... A199509 %C A199429 2... -2... 3.... A199510 %C A199429 3... -3... 1.... A199511 %C A199429 3... -3... 2.... A199513 %C A199429 Suppose that f(x,u,v) is a function of three real variables and that g(u,v) is a function defined implicitly by f(g(u,v),u,v)=0. We call the graph of z=g(u,v) an implicit surface of f. %C A199429 For an example related to A199429, take f(x,u,v)=x^2+u*x*sin(x)-v*cos(x) and g(u,v) = a nonzero solution x of f(x,u,v)=0. If there is more than one nonzero solution, care must be taken to ensure that the resulting function g(u,v) is single-valued and continuous. A portion of an implicit surface is plotted by Program 2 in the Mathematica section. %H A199429 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A199429 0.6434363641380261586420989143040131826874... %t A199429 (* Program 1: A199429 *) %t A199429 a = 1; b = 1; c = 1; %t A199429 f[x_] := a*x^2 + b*x*Sin[x]; g[x_] := c*Cos[x] %t A199429 Plot[{f[x], g[x]}, {x, -2 Pi, 2 Pi}, {AxesOrigin -> {0, 0}}] %t A199429 r = x /. FindRoot[f[x] == g[x], {x, .64, .65}, WorkingPrecision -> 110] %t A199429 RealDigits[r] (* A199429 *) %t A199429 (* Program 2: implicit surface: x^2+u*x*sin(x)=v*cos(x) *) %t A199429 f[{x_, u_, v_}] := x^2 + u*x*Sin[x] - v*Cos[x]; %t A199429 t = Table[{u, v, x /. FindRoot[f[{x, u, v}] == 0, {x, 0, 1}]}, {u, 0, 10}, {v, u, 100}]; %t A199429 ListPlot3D[Flatten[t, 1]] (* for A199429 *) %o A199429 (PARI) g(a,b,c)=solve(x=0,abs(a)+abs(b)+abs(c), my(S=sin(x),C=sqrt(1-s^2)); a*x^2+b*x*S-c*C) %o A199429 g(1,1,1) \\ _Charles R Greathouse IV_, Feb 07 2025 %Y A199429 Cf. A199370, A199170, A198866, A198755, A198414, A197737. %K A199429 nonn,cons %O A199429 0,1 %A A199429 _Clark Kimberling_, Nov 06 2011