cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A199474 Leftmost column in the monotonic justified array of all positive generalized Fibonacci sequences (A160271).

This page as a plain text file.
%I A199474 #29 Jan 09 2022 14:07:23
%S A199474 1,2,3,2,4,3,5,4,3,6,5,4,7,6,5,4,8,7,6,5,9,8,7,6,5,10,9,8,7,6,11,10,9,
%T A199474 8,7,6,12,11,10,9,8,7,13,12,11,10,9,8,7,14,13,12,11,10,9,8,15,14,13,
%U A199474 12,11,10,9,8,16,15,14,13,12,11,10,9,17,16,15,14
%N A199474 Leftmost column in the monotonic justified array of all positive generalized Fibonacci sequences (A160271).
%C A199474 Northwest corner of A160271:
%C A199474   1,   0,   1,   1,   2,   3,   5,   8,  13,  21, ...
%C A199474   2,   0,   2,   2,   4,   6,  10,  16,  26,  42, ...
%C A199474   3,   0,   3,   3,   6,   9,  15,  24,  39,  63, ...
%C A199474   2,   1,   3,   4,   7,  11,  18,  29,  47,  76, ...
%C A199474   4,   0,   4,   4,   8,  12,  20,  32,  52,  84, ...
%C A199474   3,   1,   4,   5,   9,  14,  23,  37,  60,  97, ...
%C A199474   5,   0,   5,   5,  10,  15,  25,  40,  65, 105, ...
%C A199474   4,   1,   5,   6,  11,  17,  28,  45,  73, 118, ...
%C A199474   3,   2,   5,   7,  12,  19,  31,  50,  81, 131, ...
%C A199474   ...
%H A199474 Clark Kimberling, <a href="https://doi.org/10.1007/978-94-011-2058-6_39">Orderings of the set of all positive Fibonacci sequences</a>, in G. E. Bergum et al., editors, Applications of Fibonacci Numbers, Vol. 5 (1993), pp. 405-416.
%F A199474 a(n) = (s(n)^2 - n) * [s(n)^2 - s(n) >= n] + (s(n)^2 - n + s(n)) * [s(n)^2 - s(n) < n] where s(n) = ceiling(sqrt(n)). - _Iliya Trub_, Mar 17 2019
%F A199474 a(n) = A339399(2n). - _Wesley Ivan Hurt_, Jan 09 2022
%F A199474 a(n) = floor(ceiling(sqrt(4n))^2/4)+floor(sqrt(4n-2))-floor(sqrt(n)+1/2)-n+1. - _Wesley Ivan Hurt_, Jan 09 2022
%Y A199474 Cf. A160271, A199087, A199088, A339399.
%K A199474 nonn
%O A199474 1,2
%A A199474 _Casey Mongoven_, Nov 06 2011