cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A199508 Decimal expansion of x>0 satisfying 3*x^2-2*x*sin(x)=cos(x).

This page as a plain text file.
%I A199508 #8 Feb 08 2025 10:01:43
%S A199508 7,7,3,9,8,1,1,1,7,4,2,7,4,6,7,1,7,7,5,2,1,6,5,7,3,0,3,9,8,6,7,2,5,3,
%T A199508 0,3,0,1,6,7,5,0,3,8,2,4,5,6,8,1,7,2,2,8,9,4,8,8,0,9,5,8,6,5,4,7,3,7,
%U A199508 5,2,0,7,1,3,0,3,6,9,4,8,6,9,5,3,6,3,5,9,1,3,0,4,2,1,2,0,0,9,2
%N A199508 Decimal expansion of x>0 satisfying 3*x^2-2*x*sin(x)=cos(x).
%C A199508 See A199429 for a guide to related sequences. The Mathematica program includes a graph.
%H A199508 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>.
%e A199508 0.773981117427467177521657303986725303016750...
%t A199508 a = 3; b = -2; c = 1;
%t A199508 f[x_] := a*x^2 + b*x*Sin[x]; g[x_] := c*Cos[x]
%t A199508 Plot[{f[x], g[x]}, {x, -Pi, Pi}, {AxesOrigin -> {0, 0}}]
%t A199508 r = x /. FindRoot[f[x] == g[x], {x, .77, .78}, WorkingPrecision -> 110]
%t A199508 RealDigits[r]   (* A199508 *)
%Y A199508 Cf. A199429.
%K A199508 nonn,cons
%O A199508 0,1
%A A199508 _Clark Kimberling_, Nov 07 2011