This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A199514 #30 Jan 14 2025 13:51:43 %S A199514 2,3,0,5,3,7,0,0,5,11,0,13,7,15,0,17,0,19,0,7,11,23,0,0,13,0,0,29,15, %T A199514 31,0,33,17,35,0,37,19,13,0,41,7,43,0,0,23,47,0,0,0,51,0,53,0,11,0,19, %U A199514 29,59,0,61,31,0,0,65,33,67,0,69,35,71,0,73,37,0,0,77,13,79,0,0,41,83,0,85,43,87,0,89,0 %N A199514 Numerators of zeros to a symmetric polynomial. Numerators of mu(n)^2*(n/(n - phi(n))). %C A199514 The polynomials are defined as the determinant of a symmetric matrix with the following definition: %C A199514 T(n, 1) = 1, T(1, k) = 1, T(n, k) = If n < k, x - Sum_(i = 1)^(i = n - 1) of T(k - i, n), otherwise x - Sum_(i = 1)^(i = k - 1) of T(k - i, n). %C A199514 Eric Naslund on Mathematics Stack Exchange kindly gave the description in terms of arithmetic functions. The sequence of fractions A199514/A199515 is an integer only for prime numbers. As the matrix gets bigger there are fractions as zeros that are greater than small prime numbers. %H A199514 Antti Karttunen, <a href="/A199514/b199514.txt">Table of n, a(n) for n = 2..65537</a> %H A199514 Mats Granvik, <a href="http://math.stackexchange.com/questions/64194">Are the primes found as a subset in this sequence?</a>, Mathematics Stack Exchange. %F A199514 a(n)/A199515(n) = A008683(n)^2*(n/(n - A000010(n))), n > 1. %F A199514 a(n) = numerator of A008966(n)*(n/A051953(n)). - _Antti Karttunen_, Sep 07 2018 %e A199514 The 7 X 7 symmetric matrix is: %e A199514 1......1......1......1......1......1......1 %e A199514 1...-1+x......1...-1+x......1...-1+x......1 %e A199514 1......1...-2+x......1......1...-2+x......1 %e A199514 1...-1+x......1.....-1......1...-1+x......1 %e A199514 1......1......1......1...-4+x......1......1 %e A199514 1...-1+x...-2+x...-1+x......1...2-2x......1 %e A199514 1......1......1......1......1......1...-6+x %e A199514 Taking the determinant of the matrix above gives the polynomial: -1260 x + 2322 x^2 - 1594 x^3 + 506 x^4 - 74 x^5 + 4 x^6 %e A199514 The polynomials for the first seven matrices are: %e A199514 1, %e A199514 -2 + x, %e A199514 6 - 5 x + x^2, %e A199514 -6 x + 5 x^2 - x^3, %e A199514 30 x - 31 x^2 + 10 x^3 - x^4, %e A199514 180 x - 306 x^2 + 184 x^3 - 46 x^4 + 4 x^5, %e A199514 -1260 x + 2322 x^2 - 1594 x^3 + 506 x^4 - 74 x^5 + 4 x^6, %e A199514 ... %e A199514 and their zeros respectively are: %e A199514 {} %e A199514 2 %e A199514 2, 3 %e A199514 2, 3, 0 %e A199514 2, 3, 0, 5 %e A199514 2, 3, 0, 5, 3/2 %e A199514 2, 3, 0, 5, 3/2, 7 %e A199514 ... %t A199514 Table[Numerator[MoebiusMu[n]^2*(n/(n - EulerPhi[n]))], {n, 2, 90}] %t A199514 (* or *) %t A199514 Clear[nn, t, n, k, M, x]; %t A199514 nn = 90; %t A199514 a = Range[nn]*0; %t A199514 Do[ %t A199514 t[n_, 1] = 1; %t A199514 t[1, k_] = 1; %t A199514 t[n_, k_] := %t A199514 t[n, k] = %t A199514 If[n < k, %t A199514 If[And[n > 1, k > 1], x - Sum[t[k - i, n], {i, 1, n - 1}], 0], %t A199514 If[And[n > 1, k > 1], x - Sum[t[n - i, k], {i, 1, k - 1}], 0]]; %t A199514 M = Table[Table[t[n, k], {k, 1, i}], {n, 1, i}]; %t A199514 a[[i]] = x /. Solve[Det[M] == 0, x], {i, 1, nn}]; %t A199514 a[[1]] = {}; %t A199514 b = Differences[Table[Total[a[[i]]], {i, 1, nn}]]; %t A199514 Numerator[b] %o A199514 (PARI) A199514(n) = numerator(issquarefree(n)*(n/(n-eulerphi(n)))); \\ _Antti Karttunen_, Sep 07 2018 %Y A199514 Cf. A000010, A008683, A008966, A051953, A191898. Denominators: A199515. %K A199514 nonn,frac,easy %O A199514 2,1 %A A199514 _Mats Granvik_, Nov 07 2011