A199530 T(n,k)=Number of -k..k arrays x(0..n-1) of n elements with zero sum and no two consecutive zero elements.
1, 1, 2, 1, 4, 6, 1, 6, 18, 12, 1, 8, 36, 72, 32, 1, 10, 60, 212, 320, 80, 1, 12, 90, 464, 1324, 1414, 200, 1, 14, 126, 860, 3734, 8342, 6346, 520, 1, 16, 168, 1432, 8470, 30484, 53302, 28766, 1336, 1, 18, 216, 2212, 16682, 84852, 252154, 343710, 131246, 3472, 1, 20, 270
Offset: 1
Examples
Some solutions for n=6 k=5 ..1...-1....0...-4...-1....4....1...-5....1....2...-1....1....3....3....1....5 ..0...-1...-1...-3....0....5...-3....0....1...-3...-3...-4....2...-5....1....2 .-4....5....3...-1...-2...-3....5....1...-1....5....0....2...-3....4...-4...-5 ..3...-2...-3....2....2...-4...-1....2...-4....4...-2....2....2...-5....5...-1 ..1...-3...-2....4...-4...-4....0....5....2...-5....5....4...-4....0...-2....1 .-1....2....3....2....5....2...-2...-3....1...-3....1...-5....0....3...-1...-2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..1096
Formula
Empirical for rows:
T(1,k) = 1
T(2,k) = 2*k
T(3,k) = 3*k^2 + 3*k
T(4,k) = (16/3)*k^3 + 8*k^2 - (4/3)*k
T(5,k) = (115/12)*k^4 + (115/6)*k^3 + (41/12)*k^2 - (1/6)*k
T(6,k) = (88/5)*k^5 + 44*k^4 + (58/3)*k^3 - 3*k^2 + (31/15)*k
T(7,k) = (5887/180)*k^6 + (5887/60)*k^5 + (620/9)*k^4 + (11/12)*k^3 + (433/180)*k^2 - (91/30)*k
Comments