cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A199531 Number of -n..n arrays x(0..3) of 4 elements with zero sum and no two consecutive zero elements.

Original entry on oeis.org

12, 72, 212, 464, 860, 1432, 2212, 3232, 4524, 6120, 8052, 10352, 13052, 16184, 19780, 23872, 28492, 33672, 39444, 45840, 52892, 60632, 69092, 78304, 88300, 99112, 110772, 123312, 136764, 151160, 166532, 182912, 200332, 218824, 238420, 259152
Offset: 1

Views

Author

R. H. Hardin, Nov 07 2011

Keywords

Comments

Row 4 of A199530.

Examples

			Some solutions for n=5:
.-4...-4....4....0...-5....5....2....0...-1...-3....2....1....4...-1....4...-1
..4....5...-4....2....3...-2...-2...-2....0...-2...-2...-3...-1....2...-2....5
..3....1...-2...-5...-3...-1....1....1...-2....2....3....1....0....4....1....1
.-3...-2....2....3....5...-2...-1....1....3....3...-3....1...-3...-5...-3...-5
		

Crossrefs

Cf. A199530.

Formula

Empirical: a(n) = (16/3)*n^3 + 8*n^2 - (4/3)*n.
Conjectures from Colin Barker, May 15 2018: (Start)
G.f.: 4*x*(3 + 6*x - x^2) / (1 - x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>4.
(End)