cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A199534 Number of -n..n arrays x(0..6) of 7 elements with zero sum and no two consecutive zero elements.

Original entry on oeis.org

200, 6346, 53302, 252154, 860854, 2378412, 5662636, 12071420, 23627580, 43207238, 74751754, 123503206, 196263418, 301676536, 450535152, 656109976, 934503056, 1305024546, 1790593022, 2418159346, 3219154078, 4229958436, 5492398804
Offset: 1

Views

Author

R. H. Hardin, Nov 07 2011

Keywords

Comments

Row 7 of A199530.

Examples

			Some solutions for n=5:
.-5...-5...-4...-5...-4...-5...-4...-5...-4...-5...-5...-5...-5...-4...-5...-4
..1...-3....1....3....0...-5...-4....4...-4....5...-3....0....5...-4....3....2
..1....4...-1....0....4....2....0...-5...-1....1...-1...-2....3....1...-5....2
.-1...-2....3...-1....5...-2....5....5...-2....3...-1....4...-3....4....1....0
..4...-4...-4....1...-2....5...-1....2....3...-3....5....1....0....4....5...-1
..5....5....3...-2...-1....5...-1....0....3...-5....0....4...-2....1....5....1
.-5....5....2....4...-2....0....5...-1....5....4....5...-2....2...-2...-4....0
		

Crossrefs

Cf. A199530.

Formula

Empirical: a(n) = (5887/180)*n^6 + (5887/60)*n^5 + (620/9)*n^4 + (11/12)*n^3 + (433/180)*n^2 - (91/30)*n.
Conjectures from Colin Barker, May 16 2018: (Start)
G.f.: 2*x*(100 + 2473*x + 6540*x^2 + 2653*x^3 + 4*x^4 + 4*x^5) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7.
(End)