This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A199570 #10 Feb 19 2023 17:50:42 %S A199570 1,1,2,1,3,1,3,2,3,1,4,1,4,2,4,1,4,3,4,1,4,3,4,2,4,3,4,1,5,1,5,2,5,1, %T A199570 5,3,5,1,5,3,5,2,5,3,5,1,5,4,5,1,5,4,5,2,5,4,5,1,5,4,5,3,5,4,5,1,5,4, %U A199570 5,3,5,4,5,2,5,4,5,3,5,4,5 %N A199570 Table, each row contains the previous sequence in odd columns and the row number in even columns. %H A199570 John Tyler Rascoe, <a href="/A199570/b199570.txt">Rows n = 1..9 of table, flattened</a> %e A199570 The table starts: %e A199570 1 %e A199570 1 2 %e A199570 1 3 1 3 2 3 %e A199570 1 4 1 4 2 4 1 4 3 4 1 4 3 4 2 4 3 4 %e A199570 ... %o A199570 (PARI) n=4;v=vector(3^n);v[1]=1;for(k=1,n,for(i=(s=3^(k-1))+1,3^k,v[i]=if((i-s)%2,v[(i-s+1)\2],k+1)));v %o A199570 (Python) %o A199570 def A199570_list(row): %o A199570 A = [1] %o A199570 for i in range(2,row+1): %o A199570 z = 2*(3**(i-2)) %o A199570 for j in range(1,z+1): %o A199570 if j%2 != 0: A.append(A[int((j-1)/2)]) %o A199570 else: A.append(i) %o A199570 return(A) # _John Tyler Rascoe_, Feb 19 2023 %Y A199570 Cf. A025192 (row lengths), A070940. %K A199570 nonn,tabf,easy %O A199570 1,3 %A A199570 _Franklin T. Adams-Watters_, Nov 08 2011