This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A199597 #21 Feb 08 2025 10:02:39 %S A199597 1,1,8,8,1,8,5,1,3,4,4,5,1,4,3,8,8,0,3,2,1,7,8,1,0,9,7,2,9,0,7,6,5,2, %T A199597 5,9,7,3,8,3,2,4,2,5,6,1,2,8,4,1,4,7,1,9,4,1,8,2,3,9,5,2,8,3,2,3,4,1, %U A199597 8,6,0,9,9,1,3,4,2,2,9,6,0,3,4,2,6,1,8,0,9,6,9,1,8,3,4,8,8,4,3,0 %N A199597 Decimal expansion of x > 0 satisfying x^2 + x*cos(x) = sin(x). %C A199597 For many choices of a,b,c, there is exactly one x>0 satisfying a*x^2+b*x*cos(x)=c*sin(x). %C A199597 Guide to related sequences, with graphs included in Mathematica programs: %C A199597 a.... b.... c.... x %C A199597 1.... 1.... 2.... A199597 %C A199597 1.... 1.... 3.... A199598 %C A199597 1.... 1.... 4.... A199599 %C A199597 1.... 2.... 1.... A199600 %C A199597 1.... 2.... 3.... A199601 %C A199597 1.... 2.... 4.... A199602 %C A199597 1.... 3.... 0.... A199603, A199604 %C A199597 1.... 3.... 1.... A199605, A199606 %C A199597 1.... 3.... 2.... A199607, A199608 %C A199597 1.... 3.... 3.... A199609, A199610 %C A199597 1.... 4.... 0.... A199611, A199612 %C A199597 1.... 4.... 1.... A199613, A199614 %C A199597 1.... 4.... 2.... A199615, A199616 %C A199597 1.... 4.... 3.... A199617, A199618 %C A199597 1.... 4.... 4.... A199619, A199620 %C A199597 2.... 1.... 0.... A199621 %C A199597 2.... 1.... 2.... A199622 %C A199597 2.... 1.... 3.... A199623 %C A199597 2.... 1.... 4.... A199624 %C A199597 2.... 2.... 1.... A199625 %C A199597 2.... 2.... 3.... A199661 %C A199597 3.... 1.... 0.... A199662 %C A199597 3.... 1.... 2.... A199663 %C A199597 3.... 1.... 3.... A199664 %C A199597 3.... 1.... 4.... A199665 %C A199597 3.... 2.... 0.... A199666 %C A199597 3.... 2.... 1.... A199667 %C A199597 3.... 2.... 3.... A199668 %C A199597 3.... 2.... 4.... A199669 %C A199597 1... -1.... 0.... A003957 %C A199597 1... -1.... 1.... A199722 %C A199597 1... -1.... 2.... A199721 %C A199597 1... -1.... 3.... A199720 %C A199597 1... -1.... 4.... A199719 %C A199597 1... -2.... 1.... A199726 %C A199597 1... -2.... 2.... A199725 %C A199597 1... -2.... 3.... A199724 %C A199597 1... -2.... 4.... A199723 %C A199597 1... -3.... 1.... A199730 %C A199597 1... -3.... 2.... A199729 %C A199597 1... -3.... 3.... A199728 %C A199597 1... -3.... 4.... A199727 %C A199597 1... -4.... 1.... A199737. A199738 %C A199597 1... -4.... 2.... A199735, A199736 %C A199597 1... -4.... 3.... A199733, A199734 %C A199597 1... -4.... 4.... A199731. A199732 %C A199597 2... -1.... 1.... A199742 %C A199597 2... -1.... 2.... A199741 %C A199597 2... -1.... 3.... A199740 %C A199597 2... -1.... 4.... A199739 %C A199597 2... -2.... 1.... A199776 %C A199597 2... -2.... 3.... A199775 %C A199597 2... -3.... 1.... A199780 %C A199597 2... -3.... 2.... A199779 %C A199597 2... -3.... 3.... A199778 %C A199597 2... -3.... 4.... A199777 %C A199597 2... -4.... 1.... A199782 %C A199597 2... -4.... 3.... A199781 %C A199597 3... -4.... 1.... A199786 %C A199597 3... -4.... 2.... A199785 %C A199597 3... -4.... 3.... A199784 %C A199597 3... -4.... 4.... A199783 %C A199597 3... -3.... 1.... A199789 %C A199597 3... -3.... 2.... A199788 %C A199597 3... -3.... 4.... A199787 %C A199597 3... -2.... 1.... A199793 %C A199597 3... -2.... 2.... A199792 %C A199597 3... -2.... 3.... A199791 %C A199597 3... -2.... 4.... A199790 %C A199597 3... -1.... 1.... A199797 %C A199597 3... -1.... 2.... A199796 %C A199597 3... -1.... 3.... A199795 %C A199597 3... -1.... 4.... A199794 %C A199597 4... -4.... 1.... A199873 %C A199597 4... -4.... 3.... A199872 %C A199597 4... -3.... 1.... A199871 %C A199597 4... -3.... 2.... A199870 %C A199597 4... -3.... 3.... A199869 %C A199597 4... -3.... 4.... A199868 %C A199597 4... -2.... 1.... A199867 %C A199597 4... -2.... 3.... A199866 %C A199597 4... -1.... 1.... A199865 %C A199597 4... -1.... 2.... A199864 %C A199597 4... -1.... 3.... A199863 %C A199597 4... -1.... 4.... A199862 %C A199597 Suppose that f(x,u,v) is a function of three real variables and that g(u,v) is a function defined implicitly by f(g(u,v),u,v)=0. We call the graph of z=g(u,v) an implicit surface of f. %C A199597 For an example related to A199597, take f(x,u,v)=x^2+u*x*cos(x)-v*sin(x) and g(u,v) = a nonzero solution x of f(x,u,v)=0. If there is more than one nonzero solution, care must be taken to ensure that the resulting function g(u,v) is single-valued and continuous. A portion of an implicit surface is plotted by Program 2 in the Mathematica section. %H A199597 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A199597 1.1881851344514388032178109729076525973... %t A199597 (* Program 1: A199597 *) %t A199597 a = 1; b = 1; c = 2; %t A199597 f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c*Sin[x] %t A199597 Plot[{f[x], g[x]}, {x, -Pi, Pi}, {AxesOrigin -> {0, 0}}] %t A199597 r = x /. FindRoot[f[x] == g[x], {x, 1.18, 1.19}, WorkingPrecision -> 110] %t A199597 RealDigits[r] (* A199597 *) %t A199597 (* Program 2: impl. surf. x^2+u*x*cos(x)=v*sin(x) *) %t A199597 f[{x_, u_, v_}] := x^2 + u*x*Cos[x] - v*Sin[x]; %t A199597 t = Table[{u, v, x /. FindRoot[f[{x, u, v}] == 0, {x, .5, 3}]}, {u, 0, 2}, {v, u, 20}]; %t A199597 ListPlot3D[Flatten[t, 1]] (* for A199597 *) %Y A199597 Cf. A199370, A199170, A198866, A198755, A198414, A197737, A199429. %K A199597 nonn,cons %O A199597 1,3 %A A199597 _Clark Kimberling_, Nov 08 2011 %E A199597 Edited by _Georg Fischer_, Aug 03 2021