This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A199611 #8 Feb 07 2025 19:50:23 %S A199611 1,2,5,2,3,5,3,2,3,4,0,0,2,5,8,8,7,6,3,1,8,6,3,2,8,1,2,1,9,7,5,3,8,0, %T A199611 4,3,5,9,0,1,2,8,0,6,1,0,5,6,6,1,8,9,9,9,2,3,8,6,1,4,4,3,1,3,0,8,0,8, %U A199611 0,2,4,1,3,3,5,3,2,6,7,5,6,7,8,9,0,9,6,2,7,6,9,1,9,2,7,6,2,0,1 %N A199611 Decimal expansion of least x satisfying x+4*cos(x)=0. %C A199611 See A199597 for a guide to related sequences. The Mathematica program includes a graph. %H A199611 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A199611 least: -1.25235323400258876318632812197538043590128... %e A199611 greatest: 3.59530486716154799187760693508341871491... %t A199611 a = 1; b = 4; c = 0; %t A199611 f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c*Sin[x] %t A199611 Plot[{f[x], g[x]}, {x, -2, 4}, {AxesOrigin -> {0, 0}}] %t A199611 r = x /. FindRoot[f[x] == g[x], {x, -1.3, -1.2}, WorkingPrecision -> 110] %t A199611 RealDigits[r] (* A199611, least of 4 roots *) %t A199611 r = x /. FindRoot[f[x] == g[x], {x, 3.5, 3.6}, WorkingPrecision -> 110] %t A199611 RealDigits[r] (* A199612, greatest of 4 roots *) %Y A199611 Cf. A199597. %K A199611 nonn,cons %O A199611 1,2 %A A199611 _Clark Kimberling_, Nov 08 2011