This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A199618 #8 Feb 08 2025 10:14:02 %S A199618 3,4,8,2,2,6,7,6,2,4,7,8,6,1,9,3,2,0,9,0,8,6,7,0,3,6,6,7,5,5,7,6,8,0, %T A199618 3,7,0,7,6,2,6,9,3,1,5,6,9,4,5,6,0,3,6,9,3,8,3,9,7,6,9,9,3,4,9,0,0,4, %U A199618 8,4,2,1,8,7,6,3,9,8,5,1,0,8,3,9,9,3,9,4,9,6,8,6,4,8,5,8,9,5,7 %N A199618 Decimal expansion of greatest x satisfying x^2+4*x*cos(x)=3*sin(x). %C A199618 See A199597 for a guide to related sequences. The Mathematica program includes a graph. %H A199618 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A199618 least: -0.5535433817860336287020344905911816930... %e A199618 greatest: 3.4822676247861932090867036675576803... %t A199618 a = 1; b = 4; c = 3; %t A199618 f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c*Sin[x] %t A199618 Plot[{f[x], g[x]}, {x, -2, 4}, {AxesOrigin -> {0, 0}}] %t A199618 r = x /. FindRoot[f[x] == g[x], {x, -.56, -.55}, WorkingPrecision -> 110] %t A199618 RealDigits[r] (* A199617, least of 4 roots *) %t A199618 r = x /. FindRoot[f[x] == g[x], {x, 3.4, 3.5}, WorkingPrecision -> 110] %t A199618 RealDigits[r] (* A199618, greatest of 4 roots *) %Y A199618 Cf. A199597. %K A199618 nonn,cons %O A199618 0,1 %A A199618 _Clark Kimberling_, Nov 08 2011