This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A199619 #8 Feb 08 2025 10:14:00 %S A199619 8,0,0,0,5,3,3,4,2,6,2,7,4,1,5,7,5,9,3,6,8,5,9,0,2,7,9,9,0,8,9,3,3,2, %T A199619 1,9,6,3,2,4,4,6,5,3,4,4,8,6,4,6,6,6,1,1,0,4,6,2,1,6,6,9,1,9,5,3,4,1, %U A199619 3,1,1,0,2,7,7,5,0,4,3,4,1,5,9,6,8,4,1,0,1,2,2,2,9,0,1,5,2,7,6 %N A199619 Decimal expansion of least x>0 satisfying x^2+4*x*cos(x)=4*sin(x). %C A199619 See A199597 for a guide to related sequences. The Mathematica program includes a graph. %H A199619 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A199619 least: 0.80005334262741575936859027990893321963... %e A199619 greatest: 3.4528998885329277803363008378649838... %t A199619 a = 1; b = 4; c = 4; %t A199619 f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c*Sin[x] %t A199619 Plot[{f[x], g[x]}, {x, -.5, 4}, {AxesOrigin -> {0, 0}}] %t A199619 r = x /. FindRoot[f[x] == g[x], {x, .8, .81}, WorkingPrecision -> 110] %t A199619 RealDigits[r] (* A199619, least pos root *) %t A199619 r = x /. FindRoot[f[x] == g[x], {x, 3.4, 3.5}, WorkingPrecision -> 110] %t A199619 RealDigits[r] (* A199620, greatest of 3 roots *) %Y A199619 Cf. A199597. %K A199619 nonn,cons %O A199619 0,1 %A A199619 _Clark Kimberling_, Nov 08 2011