This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A199745 #39 Jul 27 2021 04:06:54 %S A199745 2145,2730,4641,4845,5005,5460,5610,6435,7410,8190,8778,9177,10725, %T A199745 10920,11220,11305,11730,13485,13585,13650,13923,14535,14820,16380, %U A199745 16830,17017,17556,19110,19305,20010,20930,21489,21505,21840,22230,22440,23460,23529,23595 %N A199745 Numbers such that the sum of the largest and the smallest prime divisor equals the sum of the other distinct prime divisors. %C A199745 The definition implies that members of the sequence have at least four distinct prime factors. An even term must have at least five distinct prime factors. %H A199745 Reinhard Zumkeller, <a href="/A199745/b199745.txt">Table of n, a(n) for n = 1..1000</a> %F A199745 n such that A008472(n)/2 = A074320(n) = A020639(n) + A006530 (n). - _Ray Chandler_, Nov 10 2011 %F A199745 Sum_{k=2..A001221(a(n))} A027748(a(n),k) = A027748(a(n),1) + A027748(a(n), A001221(a(n))). - _Reinhard Zumkeller_, Nov 10 2011 %e A199745 22440 is in the sequence because the distinct prime divisors are {2, 3, 5, 11, 17} and 17+2 = 3+5+11. %p A199745 isA199745 := proc(n) %p A199745 local p; %p A199745 p := sort(convert(numtheory[factorset](n),list)) ; %p A199745 if nops(p) >= 3 then %p A199745 return ( op(1,p) + op(-1,p) = add(op(i,p),i=2..nops(p)-1) ) ; %p A199745 else %p A199745 false; %p A199745 end if; %p A199745 end proc: %p A199745 for n from 2 to 20000 do %p A199745 if isA199745(n) then %p A199745 printf("%d,",n) ; %p A199745 end if ; %p A199745 end do: # _R. J. Mathar_, Nov 10 2011 %t A199745 Select[Range[25000],Plus@@(pl=First/@FactorInteger[#])/2==pl[[1]]+pl[[-1]]&] (* _Ray Chandler_, Nov 10 2011 *) %o A199745 (Sage) %o A199745 def isA199745(n) : %o A199745 p = factor(n) %o A199745 return len(p) > 2 and p[0][0] + p[-1][0] == add(p[i][0] for i in (1..len(p)-2)) %o A199745 [n for n in (2..20000) if isA199745(n)] # _Peter Luschny_, Nov 10 2011 %o A199745 (Haskell) %o A199745 a199745 n = a199745_list !! (n-1) %o A199745 a199745_list = filter (\x -> 2 * (a074320 x) == a008472 x) [1..] %o A199745 -- _Reinhard Zumkeller_, Nov 10 2011 %Y A199745 Cf. A020639, A006530, A074320, A008472, A109353. %K A199745 nonn %O A199745 1,1 %A A199745 _Michel Lagneau_, Nov 09 2011