cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A199745 Numbers such that the sum of the largest and the smallest prime divisor equals the sum of the other distinct prime divisors.

This page as a plain text file.
%I A199745 #39 Jul 27 2021 04:06:54
%S A199745 2145,2730,4641,4845,5005,5460,5610,6435,7410,8190,8778,9177,10725,
%T A199745 10920,11220,11305,11730,13485,13585,13650,13923,14535,14820,16380,
%U A199745 16830,17017,17556,19110,19305,20010,20930,21489,21505,21840,22230,22440,23460,23529,23595
%N A199745 Numbers such that the sum of the largest and the smallest prime divisor equals the sum of the other distinct prime divisors.
%C A199745 The definition implies that members of the sequence have at least four distinct prime factors. An even term must have at least five distinct prime factors.
%H A199745 Reinhard Zumkeller, <a href="/A199745/b199745.txt">Table of n, a(n) for n = 1..1000</a>
%F A199745 n such that A008472(n)/2 = A074320(n) = A020639(n) + A006530 (n). - _Ray Chandler_, Nov 10 2011
%F A199745 Sum_{k=2..A001221(a(n))} A027748(a(n),k) = A027748(a(n),1) + A027748(a(n), A001221(a(n))). - _Reinhard Zumkeller_, Nov 10 2011
%e A199745 22440 is in the sequence because the distinct prime divisors are  {2, 3, 5, 11, 17} and 17+2 = 3+5+11.
%p A199745 isA199745 := proc(n)
%p A199745   local p;
%p A199745   p := sort(convert(numtheory[factorset](n),list)) ;
%p A199745   if nops(p) >= 3 then
%p A199745     return ( op(1,p) + op(-1,p) = add(op(i,p),i=2..nops(p)-1) ) ;
%p A199745   else
%p A199745     false;
%p A199745   end if;
%p A199745 end proc:
%p A199745 for n from 2 to 20000 do
%p A199745   if isA199745(n) then
%p A199745     printf("%d,",n) ;
%p A199745   end if ;
%p A199745 end do: # _R. J. Mathar_, Nov 10 2011
%t A199745 Select[Range[25000],Plus@@(pl=First/@FactorInteger[#])/2==pl[[1]]+pl[[-1]]&] (* _Ray Chandler_, Nov 10 2011 *)
%o A199745 (Sage)
%o A199745 def isA199745(n) :
%o A199745     p = factor(n)
%o A199745     return len(p) > 2 and p[0][0] + p[-1][0] == add(p[i][0] for i in (1..len(p)-2))
%o A199745 [n for n in (2..20000) if isA199745(n)]  # _Peter Luschny_, Nov 10 2011
%o A199745 (Haskell)
%o A199745 a199745 n = a199745_list !! (n-1)
%o A199745 a199745_list = filter (\x -> 2 * (a074320 x) == a008472 x) [1..]
%o A199745 -- _Reinhard Zumkeller_, Nov 10 2011
%Y A199745 Cf. A020639, A006530, A074320, A008472, A109353.
%K A199745 nonn
%O A199745 1,1
%A A199745 _Michel Lagneau_, Nov 09 2011