This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A199773 #27 Sep 08 2022 08:46:00 %S A199773 1,16,103,169,1072,6799,11153,70736,448631,735929,4667504,29602847, %T A199773 48560161,307984528,1953339271,3204234697,20322311344,128890789039, %U A199773 211430929841,1340964564176,8504838737303,13951237134809,88483338924272,561190465872959,920570219967553 %N A199773 y-values in the solution to 17*x^2 - 16 = y^2. %C A199773 When are both n+1 and 17*n+1 perfect squares? This problem gives the equation 17*x^2-16=y^2. %H A199773 G. C. Greubel, <a href="/A199773/b199773.txt">Table of n, a(n) for n = 1..500</a> %H A199773 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,66,0,0,-1). %F A199773 a(n) = 66*a(n-3) - a(n-6), a(1)=1, a(2)=16, a(3)=103, a(4)=169, a(5)=1072, a(6)=6799. %F A199773 G.f.: x*(x+1)*(x^4+15*x^3+88*x^2+15*x+1) / (x^6-66*x^3+1). - _Colin Barker_, Sep 01 2013 %e A199773 a(7) = 66*169-1 = 11153. %t A199773 LinearRecurrence[{0,0,66,0,0,-1}, {1,16,103,169,1072,6799}, 50] %t A199773 CoefficientList[Series[(x + 1) (x^4 + 15 x^3 + 88 x^2 + 15 x + 1) / (x^6 - 66 x^3 + 1), {x, 0, 33}], x] (* _Vincenzo Librandi_, Jan 06 2016 *) %o A199773 (PARI) Vec(x*(x+1)*(x^4+15*x^3+88*x^2+15*x+1)/(x^6-66*x^3+1) + O(x^100)) \\ _Colin Barker_, Sep 01 2013 %o A199773 (Magma) I:=[1,16,103,169,1072,6799]; [n le 6 select I[n] else 66*Self(n-3)-Self(n-6): n in [1..30]]; // _Vincenzo Librandi_, Jan 06 2016 %Y A199773 Cf. A199772, A199774, A199798. %K A199773 nonn,easy %O A199773 1,2 %A A199773 _Sture Sjöstedt_, Nov 10 2011 %E A199773 More terms from _T. D. Noe_, Nov 10 2011