This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A199813 #7 Mar 30 2012 18:37:32 %S A199813 1,4,38,504,8249,154036,3149326,68741880,1576163328,37548785408, %T A199813 922252542128,23222906277952,596981991939677,15616173859832740, %U A199813 414621835401615110,11150969618415168280,303278916800906999191,8330190277527648516572,230814933905555392525290 %N A199813 G.f.: exp( Sum_{n>=1} A000984(n)*A000172(n) * x^n/n ), which involves central binomial coefficients (A000984) and Franel numbers (A000172). %C A199813 Sum_{k=0..n} C(n,k)^2 = A000984(n) defines central binomial coefficients. %C A199813 Sum_{k=0..n} C(n,k)^3 = A000172(n) defines Franel numbers. %e A199813 G.f.: A(x) = 1 + 4*x + 38*x^2 + 504*x^3 + 8249*x^4 + 154036*x^5 +... %e A199813 where %e A199813 log(A(x)) = 2*2*x + 6*10*x^2/2 + 20*56*x^3/3 + 70*346*x^4/4 + 252*2252*x^5/5 + 924*15184*x^6/6 +...+ A000984(n)*A000172(n)*x^n/n +... %o A199813 (PARI) {a(n)=polcoeff(exp(sum(m=1,n,binomial(2*m, m)*sum(k=0, m, binomial(m, k)^3)*x^m/m)+x*O(x^n)),n)} %Y A199813 Cf. A199816, A181418, A000984, A000172. %K A199813 nonn %O A199813 0,2 %A A199813 _Paul D. Hanna_, Nov 10 2011