This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A199824 #28 Sep 08 2022 08:46:00 %S A199824 67,167,587,719,751,769,1129,1163,1531,1913,2099,2153,2543,2819,3049, %T A199824 3079,3709,3967,4691,4861,4909,5147,5347,5749,5813,5939,6121,6151, %U A199824 6397,6473,6563,6709,6883,6899,6911,7247,7393,7451,7703,7829,7919,8093,8171,8447,8707,8807,8963,9157,9161,9209 %N A199824 Primes in successive intervals (2^i +1 .. 2^(i+1) -1) i=1,2,3,... such that there are no prime symmetric XOR couples in either the original interval or any recursively halved interval that contains them. %C A199824 The MAGMA program provided produces output with each interval delimited by the power of 2 that starts it. %C A199824 All of these primes are a sparse subset of isolated primes (the only possible exception would be a twin prime that crosses the interval boundary, but none are known to occur). %C A199824 In each interval XOR couples are produced by XORing a number in the interval with 2^i -2 where i is the index used in the interval definition. In recursively halved intervals, i is decremented each time down to i=2. %H A199824 Alois P. Heinz, <a href="/A199824/b199824.txt">Table of n, a(n) for n = 1..10000</a> %e A199824 In the interval (17 .. 31) i=4 the numbers are coupled symmetrically around the middle of the interval by XORing each with 2^i -2 where i=4 or 14. %e A199824 |-------XOR 14-------| %e A199824 | |--------------| | %e A199824 | | |--------| | | %e A199824 | | | |--| | | | %e A199824 17 19 21 23 25 27 29 31 %e A199824 (17,31), (19,29) are prime XOR couples but the prime 23 has a composite couple (23,25). %e A199824 23 is in the first half of the interval. XORing each number in the first half of the interval with 2^i -2 where i=3 or 6 %e A199824 |---XOR 6---| %e A199824 | |---| | %e A199824 17 19 21 23 %e A199824 (17,23) is a prime XOR couple and all primes in the interval have been coupled, therefore there are no primes with only composite couples in the interval (17 .. 31). %e A199824 The first such prime occurs in the interval (65 ..127) and is 67 %p A199824 q:= (l, p, r)-> r-l=2 or not isprime(l+r-p) and %p A199824 `if`((l+r)/2>p, q(l, p, (l+r)/2), q((l+r)/2, p, r)): %p A199824 a:= proc(n) local p, l; %p A199824 p:= `if`(n=1, 3, a(n-1)); %p A199824 do p:= nextprime(p); %p A199824 l:= 2^ilog2(p); %p A199824 if q(l, p, l+l) then break fi %p A199824 od; a(n):=p %p A199824 end: %p A199824 seq(a(n), n=1..60); # _Alois P. Heinz_, Nov 13 2011 %t A199824 q[l_, p_, r_] := r - l == 2 || ! PrimeQ[l + r - p] && %t A199824 If[(l + r)/2 > p, q[l, p, (l + r)/2], q[(l + r)/2, p, r]]; %t A199824 a[n_] := a[n] = Module[{p, l}, %t A199824 p = If[n == 1, 3, a[n - 1]]; While[True, p = NextPrime[p]; %t A199824 l = 2^(Length[IntegerDigits[p, 2]]-1); If[q[l, p, l+l], Break[]]]; p]; %t A199824 Table[a[n], {n, 1, 60}] (* _Jean-François Alcover_, Jul 11 2021, after _Alois P. Heinz_ *) %o A199824 (Magma) %o A199824 XOR := func<a, b | Seqint([ (adigs[i] + bdigs[i]) mod 2 : i in [1..n]], 2) %o A199824 where adigs := Intseq(a, 2, n) %o A199824 where bdigs := Intseq(b, 2, n) %o A199824 where n := 1 + Ilog2(Max([a, b, 1]))>; %o A199824 for i:= 4 to 16 do %o A199824 "****", i; %o A199824 for j:= 2^(i) +1 to 2^(i+1) -1 by 2 do %o A199824 sympair:=0; %o A199824 for k:= 2 to i do %o A199824 xornum:=2^k -2; %o A199824 xorcouple:=XOR(j,xornum); %o A199824 if (IsPrime(j) and IsPrime(xorcouple)) then sympair:=1; %o A199824 end if; %o A199824 end for; %o A199824 if ((sympair eq 0) and IsPrime(j)) then j; %o A199824 end if; %o A199824 end for; %o A199824 end for; %Y A199824 Cf. A000040. %K A199824 nonn %O A199824 1,1 %A A199824 _Brad Clardy_, Nov 11 2011