cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A199832 T(n,k)=Number of -k..k arrays x(0..n+1) of n+2 elements with zero sum and no two neighbors summing to zero.

Original entry on oeis.org

2, 10, 4, 24, 40, 4, 44, 140, 114, 10, 70, 336, 646, 426, 22, 102, 660, 2146, 3556, 1650, 34, 140, 1144, 5390, 15708, 20240, 6126, 66, 184, 1820, 11384, 49302, 118280, 113884, 23206, 138, 234, 2720, 21364, 124982, 462234, 888420, 645780, 88636, 250, 290, 3876
Offset: 1

Views

Author

R. H. Hardin Nov 11 2011

Keywords

Comments

Table starts
...2......10........24.........44..........70..........102...........140
...4......40.......140........336.........660.........1144..........1820
...4.....114.......646.......2146........5390........11384.........21364
..10.....426......3556......15708.......49302.......124982........273728
..22....1650.....20240.....118280......462234......1402934.......3579520
..34....6126....113884.....888420.....4340094.....15805218......47040968
..66...23206....645780....6715618....41008804....179213048.....622300326
.138...88636...3685550...51077518...389832124...2044221894....8281149188
.250..337866..21117750..390278378..3723199342..23427591518..110718596524
.472.1295566.121503530.2993722414.35697026718.269528370904.1486040082748

Examples

			Some solutions for n=4 k=3
..3....2...-2...-3...-3....3...-1...-1....0...-1....3...-1....2...-3....1....3
..3....2....0....0....1...-2....0....2....2....2....3....0...-1...-1....3....1
.-2....0....1....1....2...-2....1....2....1....0....0....1...-3....2....2...-2
.-2...-1...-2....0....2....0...-3....2....1...-2...-2...-2...-1...-1...-3...-3
..1...-1....0....3....1....3....1...-3...-2...-1...-1....0....3....2...-1....2
.-3...-2....3...-1...-3...-2....2...-2...-2....2...-3....2....0....1...-2...-1
		

Crossrefs

Row 1 is A049450

Formula

Empirical for rows:
T(1,k) = 3*k^2 - k
T(2,k) = (16/3)*k^3 - (4/3)*k
T(3,k) = (115/12)*k^4 - (29/6)*k^3 + (5/12)*k^2 - (7/6)*k
T(4,k) = (88/5)*k^5 - (28/3)*k^4 + (2/3)*k^3 + (7/3)*k^2 - (19/15)*k
T(5,k) = (5887/180)*k^6 - (1013/60)*k^5 + (245/36)*k^4 - (35/12)*k^3 + (157/45)*k^2 - (6/5)*k
T(6,k) = (19328/315)*k^7 - (1424/45)*k^6 + (704/45)*k^5 - (112/9)*k^4 - (124/45)*k^3 + (229/45)*k^2 - (131/105)*k
T(7,k) = (259723/2240)*k^8 - (299869/5040)*k^7 + (39757/1440)*k^6 - (8303/360)*k^5 + (31829/2880)*k^4 - (8083/720)*k^3 + (32213/5040)*k^2 - (509/420)*k
T(8,k) = (124952/567)*k^9 - (35524/315)*k^8 + (50588/945)*k^7 - (2494/45)*k^6 + (13739/270)*k^5 - (1927/180)*k^4 - (41254/2835)*k^3 + (3319/420)*k^2 - (781/630)*k