A199835 Number of -n..n arrays x(0..5) of 6 elements with zero sum and no two neighbors summing to zero.
10, 426, 3556, 15708, 49302, 124982, 273728, 538968, 978690, 1667554, 2699004, 4187380, 6270030, 9109422, 12895256, 17846576, 24213882, 32281242, 42368404, 54832908, 70072198, 88525734, 110677104, 137056136, 168241010, 204860370
Offset: 1
Keywords
Examples
Some solutions for n=3 ..0....2....3....2...-1...-3....0...-1....2...-1....1....0....0...-1....0...-2 .-1...-1....0....1...-1....2....2...-3....2....0....3....2...-1....3....3...-2 ..2...-1....1...-3....3....3....0....1...-3....2...-2....1....2...-2...-1...-1 ..1...-2...-3...-3...-2....1...-1....0....2....2....0...-2...-3....1....0....3 .-2....0...-2....2....0....0...-1....2...-1....0...-1...-2...-1...-2...-3....0 ..0....2....1....1....1...-3....0....1...-2...-3...-1....1....3....1....1....2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..200
Formula
Empirical: a(n) = n*(2*n+1)*(2*n-1)*(66*n^2-35*n+19)/15.
Empirical: G.f.: 2*x*(5+183*x+575*x^2+281*x^3+12*x^4) / (x-1)^6 . - R. J. Mathar, Aug 01 2014
Comments