A199836 Number of -n..n arrays x(0..6) of 7 elements with zero sum and no two neighbors summing to zero.
22, 1650, 20240, 118280, 462234, 1402934, 3579520, 8046928, 16426926, 31082698, 55316976, 93593720, 151783346, 237431502, 360051392, 531439648, 766015750, 1081184994, 1497725008, 2040195816, 2737373450, 3622707110, 4734799872
Offset: 1
Keywords
Examples
Some solutions for n=3: ..0....1...-2...-1...-1....3....0....1...-1....1...-2...-2....0....2...-1....0 .-1....0....1...-1...-2....1....3....1...-3....0....3...-1....1...-1...-3....2 .-1....1....3...-1...-1...-3...-1...-2....1...-1....2....2...-2...-1...-2....1 .-1...-3....3....3....3...-3...-2....0...-2...-3....0....1....1...-2....1...-2 ..2...-3...-2...-1....3....0....3...-1....3....2...-2....2....1....1....2...-3 ..1....1...-1....0...-2....3...-1....0....1....1....1....1....0...-2....0....0 ..0....3...-2....1....0...-1...-2....1....1....0...-2...-3...-1....3....3....2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..200
Crossrefs
Cf. A199832.
Formula
Empirical: a(n) = (5887/180)*n^6 - (1013/60)*n^5 + (245/36)*n^4 - (35/12)*n^3 + (157/45)*n^2 - (6/5)*n.
Conjectures from Colin Barker, May 16 2018: (Start)
G.f.: 2*x*(11 + 748*x + 4576*x^2 + 5240*x^3 + 1167*x^4 + 32*x^5) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7.
(End)
Comments