cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A199837 Number of -n..n arrays x(0..7) of 8 elements with zero sum and no two neighbors summing to zero.

This page as a plain text file.
%I A199837 #8 May 16 2018 11:19:31
%S A199837 34,6126,113884,888420,4340094,15805218,47040968,120843752,277500282,
%T A199837 583380598,1141982292,2107735180,3702875670,6237700074,10134506112,
%U A199837 15955531856,24435201362,36516986238,53395192396,76561981236
%N A199837 Number of -n..n arrays x(0..7) of 8 elements with zero sum and no two neighbors summing to zero.
%C A199837 Row 6 of A199832.
%H A199837 R. H. Hardin, <a href="/A199837/b199837.txt">Table of n, a(n) for n = 1..197</a>
%F A199837 Empirical: a(n) = (19328/315)*n^7 - (1424/45)*n^6 + (704/45)*n^5 - (112/9)*n^4 - (124/45)*n^3 + (229/45)*n^2 - (131/105)*n.
%F A199837 Conjectures from _Colin Barker_, May 16 2018: (Start)
%F A199837 G.f.: 2*x*(17 + 2927*x + 32914*x^2 + 73486*x^3 + 40405*x^4 + 4819*x^5 + 56*x^6) / (1 - x)^8.
%F A199837 a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) for n>8.
%F A199837 (End)
%e A199837 Some solutions for n=3:
%e A199837 ..0....1....2....2...-2....0...-2....0...-2....2....1...-2...-1...-3....0...-2
%e A199837 ..2....0....0....1...-1....2...-1....1....0....1....3....1....2....0...-2....3
%e A199837 ..2...-3....1....0....0...-3....0....2....2....2....0....0....1....3....3....0
%e A199837 .-3....0...-3...-2...-1...-1....1...-3...-3....0....1....2...-2....0....2....1
%e A199837 ..0....1....0...-2....0....0....1...-1...-1...-3...-3....2...-1...-1...-1....2
%e A199837 ..3...-3...-1....3....1....1....0...-1....3...-1...-1....0....0....0...-1....0
%e A199837 .-2....2...-2....0....2....2....2....0....3...-3...-3...-1....3....1....0...-2
%e A199837 .-2....2....3...-2....1...-1...-1....2...-2....2....2...-2...-2....0...-1...-2
%Y A199837 Cf. A199832.
%K A199837 nonn
%O A199837 1,1
%A A199837 _R. H. Hardin_, Nov 11 2011