This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A199838 #11 May 25 2021 05:11:21 %S A199838 66,23206,645780,6715618,41008804,179213048,622300326,1827026482, %T A199838 4719970500,11025201168,23740333870,47800415256,90973748554, %U A199838 165038447302,287293180292,482460245532,785043786046,1242210635346,1917265955424 %N A199838 Number of -n..n arrays x(0..8) of 9 elements with zero sum and no two neighbors summing to zero. %C A199838 Row 7 of A199832. %H A199838 R. H. Hardin, <a href="/A199838/b199838.txt">Table of n, a(n) for n = 1..80</a> %F A199838 Empirical: a(n) = (259723/2240)*n^8 - (299869/5040)*n^7 + (39757/1440)*n^6 - (8303/360)*n^5 + (31829/2880)*n^4 - (8083/720)*n^3 + (32213/5040)*n^2 - (509/420)*n. %F A199838 Conjectures from _Colin Barker_, Mar 02 2018: (Start) %F A199838 G.f.: 2*x*(33 + 11306*x + 219651*x^2 + 866735*x^3 + 937667*x^4 + 283090*x^5 + 18897*x^6 + 128*x^7) / (1 - x)^9. %F A199838 a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>9. %F A199838 (End) %e A199838 Some solutions for n=3: %e A199838 .-3...-3...-3...-3...-3...-3...-3...-3...-3...-3...-3...-3...-3...-3...-3....0 %e A199838 .-3...-3...-3....2....2....2....2....1...-1....0...-1...-3....2....0....1...-3 %e A199838 .-1...-1....0....1...-1....0....0...-3...-1....2....0...-1....3....1...-2...-2 %e A199838 ..2....0...-3...-3...-2....1....2....1....2...-1....2...-1....1....2....1....3 %e A199838 ..0....2....2...-3....3...-3....0....3....2....0....2....3...-2....1....3...-1 %e A199838 .-1....0....3...-2....0...-1...-3...-1...-3...-3....0....3...-3....3...-1...-2 %e A199838 ..3....3....0....3...-1....2...-1....3....0....0....1....0....1....0....2....3 %e A199838 ..3....0....2....2....0....1....2....1....2....3...-2....3....2...-1....2...-1 %e A199838 ..0....2....2....3....2....1....1...-2....2....2....1...-1...-1...-3...-3....3 %Y A199838 Cf. A199832. %K A199838 nonn %O A199838 1,1 %A A199838 _R. H. Hardin_, Nov 11 2011