A199850 Number of -n..n arrays x(0..5) of 6 elements with zero sum and no element more than one greater than the previous.
63, 192, 428, 845, 1532, 2600, 4188, 6465, 9634, 13932, 19636, 27065, 36582, 48598, 63576, 82029, 104530, 131710, 164262, 202945, 248586, 302082, 364406, 436607, 519814, 615238, 724178, 848019, 988240, 1146414, 1324210, 1523399, 1745856
Offset: 1
Keywords
Examples
Some solutions for n=6: ..5....6....5....5....2....1....3....2....3....1....2....4....4....4....2....5 ..4...-2....6....0....3....2....1....3....3...-1....0....2....4....3....3....0 ..2...-1....1...-1....3....3...-2....2....3...-1....1....0....2....2....0....1 .-4....0...-1....0....1....0...-1....0...-2....0....2....0...-4...-2...-2...-1 .-3....0...-6...-2...-3...-3....0...-4...-2....1....0...-1...-3...-2...-1...-1 .-4...-3...-5...-2...-6...-3...-1...-3...-5....0...-5...-5...-3...-5...-2...-4
Links
- R. H. Hardin, Table of n, a(n) for n = 1..200
Crossrefs
Cf. A199847.
Formula
Empirical: a(n) = 3*a(n-1) -2*a(n-2) -a(n-3) +2*a(n-5) -a(n-6) -a(n-7) +2*a(n-8) -a(n-10) -2*a(n-11) +3*a(n-12) -a(n-13) for n>14.
Empirical g.f.: x*(63 + 3*x - 22*x^2 + 8*x^3 + 45*x^4 - 4*x^5 - 24*x^6 + 32*x^7 + 19*x^8 - 27*x^9 - 43*x^10 + 39*x^11 + 8*x^12 - 9*x^13) / ((1 - x)^6*(1 + x)*(1 + x + x^2)*(1 + x + x^2 + x^3 + x^4)). - Colin Barker, May 16 2018
Comments