A199856 Triangle T(n,k), read by rows, given by (-1,3,0,0,0,0,0,0,0,0,0,...) DELTA (1,0,-1/3,1/3,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938.
1, -1, 1, -2, 1, 1, -4, 1, 2, 1, -8, 0, 4, 3, 1, -16, -4, 7, 8, 4, 1, -32, -16, 10, 19, 13, 5, 1, -64, -48, 8, 41, 37, 19, 6, 1, -128, -128, -16, 80, 96, 62, 26, 7, 1, -256, -320, -112, 136, 231, 183, 95, 34, 8, 1, -512, -768, -416, 176, 518, 501, 311, 137, 43, 9, 1
Offset: 0
Examples
Triangle begins : 1 -1, 1 -2, 1, 1 -4, 1, 2, 1 -8, 0, 4, 3, 1 -16, -4, 7, 8, 4, 1 -32, -16, 10, 19, 13, 5, 1 -64, -48, 8, 41, 37, 19, 6, 1 -128, -128, -16, 80, 96, 62, 26, 7, 1
Formula
T(n,k)=2*T(n-1,k)+T(n-1,k-1)-T(n-2,k-1), for n>2.
T(n,0)=-2^(n-1) for n>0.
T(2*n,n)=A047781(n) for n>0.
T(n,1)=(4-n)*2^(n-3) for n>1.
G.f.: (1-3*x+x^2*y)/(1-2*x+x^2*y-x*y). - R. J. Mathar, Aug 11 2015
Comments