This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A199857 #31 May 14 2023 02:33:43 %S A199857 24871,81719,81809,88711,174097,198679,201761,256151,273581,290191, %T A199857 329681,405449,422807,428281,472549,572663,592999,604279,620977, %U A199857 701561,728119,752191,770431,876641,898909,1011839,1063517,1121729,1178879,1218679,1251439,1389223 %N A199857 Numbers such that the sum of the squares of the largest and the smallest prime divisor equals the sum of the squares of the other distinct prime divisors. %H A199857 Amiram Eldar, <a href="/A199857/b199857.txt">Table of n, a(n) for n = 1..10000</a> %e A199857 24871 is in the sequence because the prime distinct divisors are {7, 11, 17, 19} and 19^2 + 7^2 = 11^2 + 17^2 = 410. %e A199857 Although the early terms are all odd with four distinct prime factors, 7212590 = 2 * 5 * 7 * 11 * 17 * 19 * 29 has seven distinct prime factors, and 2^2 + 29^2 = 5^2 + 7^2 + 11^2 + 17^2 + 19^2 = 845. - _D. S. McNeil_, Nov 12 2011 %p A199857 isA199857 := proc(n) %p A199857 local p; %p A199857 p := sort(convert((numtheory[factorset](n)), list)) ; %p A199857 if nops(p) >= 3 then %p A199857 return ( op(1, p)^2 + op(-1, p)^2 = add(op(i, p)^2, i=2..nops(p)-1) ) ; %p A199857 else %p A199857 false; %p A199857 end if; %p A199857 end proc: %p A199857 for n from 2 to 1500000 do %p A199857 if isA199857(n) then %p A199857 printf("%d, ", n) ; %p A199857 end if ; %p A199857 end do: # program from _R. J. Mathar_ adapted for this sequence - see A199745 %t A199857 Select[Range[1400000], Plus@@((pl=First/@FactorInteger[#])^2/2) == pl[[1]]^2+pl[[-1]]^2&] (* program from _Ray Chandler_ adapted for this sequence - see A199745 *) %Y A199857 Cf. A199745. %K A199857 nonn %O A199857 1,1 %A A199857 _Michel Lagneau_, Nov 11 2011