A199859 Numbers k such that 6k-5 is a composite number of the form (6x-5)*(6y-5) when x or y is not equal to 1 except for k=1.
1, 9, 16, 23, 29, 30, 37, 42, 44, 51, 55, 58, 61, 65, 68, 72, 79, 80, 81, 86, 93, 94, 99, 100, 105, 107, 114, 118, 120, 121, 128, 130, 133, 135, 137, 142, 146, 149, 155, 156, 159, 161, 163, 170, 172, 175, 177, 180, 184, 185, 191, 192, 194, 198, 205, 211, 212
Offset: 0
Crossrefs
Cf. A091300.
Programs
-
Maple
isA016921 := proc(n) (n mod 6)=1 ; end proc: isA091300 := proc(n) (not isprime(n)) and isA016921(n) ; end proc: isA199859 := proc(n) if n = 1 then return true; elif isA091300(6*n-5) then for d in numtheory[divisors](6*n-5) minus {1,6*n-5} do if isA016921(d) and isA016921((6*n-5)/d) then return true; end if; end do: return false; else return false; end if; end proc: for n from 1 to 210 do if isA199859(n) then printf("%d,",n) ; end if ; end do; # R. J. Mathar, Nov 25 2011
Comments