This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A199860 #18 May 11 2019 18:32:21 %S A199860 5,10,15,20,21,25,30,32,35,40,43,45,49,50,54,55,60,65,66,70,75,76,80, %T A199860 83,85,87,89,90,95,98,100,105,109,110,112,115,117,120,125,130,131,134, %U A199860 135,140,141,142,145,150,151,153,155,158,160,164,165,168,170,175 %N A199860 Numbers k such that 6k-5 is a composite number of the form (6x-1) * (6y-1). %C A199860 Numbers whose associate in A091300 has at least one factorization into two factors of A016969. %e A199860 n=5 is in the sequence because 6*5-5 = 25 = 5*5 with x = y = 1. %e A199860 n=10 is in the sequence because 6*10-5 = 55 = 5*11 with x=1, y=2. %p A199860 isA016969 := proc(n) %p A199860 (n mod 6)=5 ; %p A199860 end proc: %p A199860 isA016921 := proc(n) %p A199860 (n mod 6)=1 ; %p A199860 end proc: %p A199860 isA091300 := proc(n) %p A199860 (not isprime(n)) and isA016921(n) ; %p A199860 end proc: %p A199860 isA199860 := proc(n) %p A199860 if isA091300(6*n-5) then %p A199860 for d in numtheory[divisors](6*n-5) minus {1} do %p A199860 if isA016969(d) and isA016969((6*n-5)/d) then %p A199860 return true; %p A199860 end if; %p A199860 end do: %p A199860 return false; %p A199860 else %p A199860 return false; %p A199860 end if; %p A199860 end proc: %p A199860 for n from 5 to 210 do %p A199860 if isA199860(n) then %p A199860 printf("%d,",n) ; %p A199860 end if ; %p A199860 end do; # _R. J. Mathar_, Nov 27 2011 %Y A199860 Cf. A199859. %K A199860 nonn,easy %O A199860 1,1 %A A199860 _Eleonora Echeverri-Toro_, Nov 11 2011