cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A199861 The decimal expansion (unsigned) of the value of d that maximizes the Brahmagupta expression given below.

Original entry on oeis.org

2, 2, 7, 1, 0, 6, 4, 4, 8, 2, 9, 4, 3, 8, 1, 2, 0, 3, 0, 1, 1, 1, 4, 3, 3, 5, 2, 5, 3, 2, 3, 4, 4, 6, 1, 8, 3, 7, 7, 5, 4, 0, 5, 3, 1, 2, 9, 8, 6, 7, 4, 9, 6, 2, 9, 3, 2, 5, 4, 0, 3, 5, 4, 5, 5, 0, 4, 8, 1, 2, 6, 1, 0, 0, 0, 1, 6, 0, 1, 8, 4, 3, 7, 1, 1, 6, 7, 7, 4, 5, 2, 8, 4, 9, 4, 9, 4, 5, 8, 6, 3, 5, 8
Offset: 0

Views

Author

Frank M Jackson, Nov 11 2011

Keywords

Comments

Brahmagupta expression sqrt((-1+1/(1+d)+1/(1+2d)+1/(1+3d)) * (1-1/(1+d)+1/(1+2d)+1/(1+3d)) * (1+1/(1+d)-1/(1+2d)+1/(1+3d)) * (1+1/(1+d)+1/(1+2d)-1/(1+3d)))/4 for d in the interval [-1/3, inf] where 1/(1+d), 1/(1+2d) and 1/(1+3d) are always positive.
The area of a convex quadrilateral with fixed sides is maximal when it is organized as a convex cyclic quadrilateral. Furthermore in order that a quadrilateral can have sides in a harmonic progression 1 : 1/(1+d) : 1/(1+2d) : 1/(1+3d) its denominator's common difference d is limited to the range f < d < g where f is the constant A199590 and g is the constant A199589. Consequently when d=-0.2271064482... it maximizes Brahmagupta's expression for the area of a convex cyclic quadrilateral whose sides form a harmonic progression.

Examples

			-0.22710644829438120301114335253234461837754...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[d/.NMaximize[{Sqrt[(-1+1/(1+d)+1/(1+2d)+1/(1+3d))(1-1/(1+d)+1/(1+2d)+1/(1+3d))(1+1/(1+d)-1/(1+2d)+1/(1+3d))(1+1/(1+d)+1/(1+2d)-1/(1+3d))]/4, -1/4120, PrecisionGoal->100, WorkingPrecision->240][[2]]][[1]]
  • PARI
    real(polroots(1323*d^12 + 9711*d^11 + 32535*d^10 + 67005*d^9 + 94338*d^8 + 94761*d^7 + 68955*d^6 + 36367*d^5 + 13740*d^4 + 3619*d^3 + 630*d^2 + 65*d + 3)[4]) \\ Charles R Greathouse IV, Nov 11 2011
    
  • PARI
    polrootsreal(1323*x^12 - 9711*x^11 + 32535*x^10 - 67005*x^9 + 94338*x^8 - 94761*x^7 + 68955*x^6 - 36367*x^5 + 13740*x^4 - 3619*x^3 + 630*x^2 - 65*x + 3)[1] \\ Charles R Greathouse IV, Oct 27 2023

Formula

d is the largest real root of the equation 1323d^12 + 9711d^11 + 32535d^10 + 67005d^9 + 94338d^8 + 94761d^7 + 68955d^6 + 36367d^5 + 13740d^4 + 3619d^3 + 630d^2 + 65d + 3 = 0.