This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A199879 #15 Jul 03 2024 10:54:48 %S A199879 0,2,2,1,35,1,2,2,1,2,5,3,1,1,45,1,1,6,11,2,9,2,2,2,2,1,1,1,29,1,3,7, %T A199879 4,1,7,61,1,1,2,1,2,6,2,1,1,96,11,1,2,1,1,4,14,1,10,1,2,1,7,4,7,5,10, %U A199879 1,6,2,2,9,6,8,3,1,3,1,3,7,9 %N A199879 Continued fraction for x value of the unique pairwise intersection on (0,1) of distinct order 5 power tower functions with parentheses inserted. %e A199879 0.42801103796472992390204... %p A199879 with(numtheory): %p A199879 f:= x-> (x^(x^x))^(x^x): g:= x-> x^(x^((x^x)^x)): %p A199879 Digits:= 200: %p A199879 xv:= fsolve(f(x)=g(x), x=0..0.99): %p A199879 cfrac(evalf(xv), 120, 'quotients')[]; %t A199879 terms = 77; digits = terms+10; xv = x /. FindRoot[x^(x^2) - 2x == 0, {x, 1/2}, WorkingPrecision -> digits]; ContinuedFraction[xv, terms] (* _Jean-François Alcover_, Mar 24 2017 *) %Y A199879 Cf. A199814 (decimal expansion), A199880 (Engel expansion). %K A199879 nonn,cofr %O A199879 0,2 %A A199879 _Alois P. Heinz_, Nov 11 2011 %E A199879 Offset changed by _Andrew Howroyd_, Jul 03 2024