cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A199879 Continued fraction for x value of the unique pairwise intersection on (0,1) of distinct order 5 power tower functions with parentheses inserted.

This page as a plain text file.
%I A199879 #15 Jul 03 2024 10:54:48
%S A199879 0,2,2,1,35,1,2,2,1,2,5,3,1,1,45,1,1,6,11,2,9,2,2,2,2,1,1,1,29,1,3,7,
%T A199879 4,1,7,61,1,1,2,1,2,6,2,1,1,96,11,1,2,1,1,4,14,1,10,1,2,1,7,4,7,5,10,
%U A199879 1,6,2,2,9,6,8,3,1,3,1,3,7,9
%N A199879 Continued fraction for x value of the unique pairwise intersection on (0,1) of distinct order 5 power tower functions with parentheses inserted.
%e A199879 0.42801103796472992390204...
%p A199879 with(numtheory):
%p A199879 f:= x-> (x^(x^x))^(x^x): g:= x-> x^(x^((x^x)^x)):
%p A199879 Digits:= 200:
%p A199879 xv:= fsolve(f(x)=g(x), x=0..0.99):
%p A199879 cfrac(evalf(xv), 120, 'quotients')[];
%t A199879 terms = 77; digits = terms+10; xv = x /. FindRoot[x^(x^2) - 2x == 0, {x, 1/2}, WorkingPrecision -> digits]; ContinuedFraction[xv, terms] (* _Jean-François Alcover_, Mar 24 2017 *)
%Y A199879 Cf. A199814 (decimal expansion), A199880 (Engel expansion).
%K A199879 nonn,cofr
%O A199879 0,2
%A A199879 _Alois P. Heinz_, Nov 11 2011
%E A199879 Offset changed by _Andrew Howroyd_, Jul 03 2024