A199898 T(n,k)=Number of -k..k arrays x(0..n-1) of n elements with zero sum, and adjacent elements not both strictly positive and not both strictly negative.
1, 1, 3, 1, 5, 7, 1, 7, 15, 15, 1, 9, 25, 49, 33, 1, 11, 37, 111, 159, 75, 1, 13, 51, 209, 461, 533, 171, 1, 15, 67, 351, 1043, 2035, 1783, 391, 1, 17, 85, 545, 2031, 5725, 8823, 6027, 899, 1, 19, 105, 799, 3573, 13363, 30199, 39053, 20437, 2077, 1, 21, 127, 1121, 5839
Offset: 1
Examples
Some solutions for n=7 k=6 ..1....3....3....4...-3....4....4....0....3....3...-3...-6....4...-5....0....4 .-3...-4...-4...-6....5...-2...-6....6...-3...-5....0....3...-4....5...-3...-5 ..0....1....2....2...-3....4....4...-5....0....4....3...-1....0...-4....5....1 .-1....0...-3....0....0...-1...-3....3....4....0....0....6....5....6....0...-1 ..4....0....2....0....1....0....0...-6...-1....2...-2...-2...-6...-3...-3....5 .-6...-4...-2....3...-6...-5...-4....5....3....0....2....4....3....4....6....0 ..5....4....2...-3....6....0....5...-3...-6...-4....0...-4...-2...-3...-5...-4
Links
- R. H. Hardin, Table of n, a(n) for n = 1..1096
Formula
Empirical for rows:
T(1,k) = 1
T(2,k) = 2*k + 1
T(3,k) = k^2 + 5*k + 1
T(4,k) = (4/3)*k^3 + 6*k^2 + (20/3)*k + 1
T(5,k) = (11/12)*k^4 + (49/6)*k^3 + (193/12)*k^2 + (41/6)*k + 1
T(6,k) = (11/10)*k^5 + (55/6)*k^4 + (55/2)*k^3 + (173/6)*k^2 + (37/5)*k + 1
T(7,k) = (151/180)*k^6 + (163/15)*k^5 + (377/9)*k^4 + (395/6)*k^3 + (7429/180)*k^2 + (93/10)*k + 1
Comments