cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A199899 Number of -n..n arrays x(0..3) of 4 elements with zero sum, and adjacent elements not both strictly positive and not both strictly negative.

Original entry on oeis.org

15, 49, 111, 209, 351, 545, 799, 1121, 1519, 2001, 2575, 3249, 4031, 4929, 5951, 7105, 8399, 9841, 11439, 13201, 15135, 17249, 19551, 22049, 24751, 27665, 30799, 34161, 37759, 41601, 45695, 50049, 54671, 59569, 64751, 70225, 75999, 82081, 88479, 95201
Offset: 1

Views

Author

R. H. Hardin, Nov 11 2011

Keywords

Comments

Row 4 of A199898.

Examples

			Some solutions for n=6:
..3....3....4...-2....5...-2....5...-3....4...-3....0....2....0....6....3....1
..0...-6...-4....6...-4....1...-5....2...-5....6....2...-2....5...-1...-5...-5
..2....3....1...-6....3...-4....3...-1....5....0....0....5...-5....0....6....0
.-5....0...-1....2...-4....5...-3....2...-4...-3...-2...-5....0...-5...-4....4
		

Crossrefs

Cf. A199898.

Formula

Empirical: a(n) = (4/3)*n^3 + 6*n^2 + (20/3)*n + 1.
Conjectures from Colin Barker, Feb 23 2018: (Start)
G.f.: x*(3 - x)*(5 - 2*x + x^2) / (1 - x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>4.
(End)