A199902 Number of -n..n arrays x(0..6) of 7 elements with zero sum, and adjacent elements not both strictly positive and not both strictly negative.
171, 1783, 8823, 30199, 82555, 193689, 406575, 783989, 1413739, 2414499, 3942247, 6197307, 9431995, 13958869, 20159583, 28494345, 39511979, 53860591, 72298839, 95707807, 125103483, 161649841, 206672527, 261673149, 328344171, 408584411
Offset: 1
Keywords
Examples
Some solutions for n=6: .-3....0....1....1....3....1....0....3....0....0...-5...-3....0....3....0....4 ..4....4...-2....0...-1...-5....0...-4....0....2....3....5...-6....0...-6....0 .-2...-2....3...-3....3....1...-5....3...-1....0....0....0....1...-5....4...-3 ..5....1....0....5...-6...-3....5...-5....1...-5....6...-6...-6....2...-5....2 .-3...-1...-5...-6....4....5...-1....4....0....4...-3....0....6...-1....3...-5 ..5....1....5....4...-5...-3....5...-2...-4....0....2....6...-1....5...-2....5 .-6...-3...-2...-1....2....4...-4....1....4...-1...-3...-2....6...-4....6...-3
Links
- R. H. Hardin, Table of n, a(n) for n = 1..200
Crossrefs
Cf. A199898.
Formula
Empirical: a(n) = (151/180)*n^6 + (163/15)*n^5 + (377/9)*n^4 + (395/6)*n^3 + (7429/180)*n^2 + (93/10)*n + 1.
Conjectures from Colin Barker, May 17 2018: (Start)
G.f.: x*(171 + 586*x - 67*x^2 - 104*x^3 + 25*x^4 - 8*x^5 + x^6) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7.
(End)
Comments